Protein synthesis in postnuclear supernatants from mengovirus-infected Ehrlich ascites tumor cells. 1976

E Egberts, and P B Hackett, and P Traub

The effect of mengovirus infection on the protein synthetic capacity of Ehrlich ascites tumor cells cultured in vitro was studied in vivo and in vitro employing postnuclear supernatants prepared at various times post-infection in the absence and in the presence of 1% Triton X-100. The amino acid incorporating activities of extracts obtained in the presence of the detergent were reduced by about 30% compared with the capacities of the corresponding postnuclear supernatants prepared in the absence of Triton X-100; but the course of the activity vs. time curve was not influenced by the detergent. Under the conditions employed, the postnuclear supernatants were unable to reinitiate protein synthesis once elongation of nascent polypeptide chains concomitant with ribosome runoff was completed. After mengovirus infection, a gradual disappearance of polysomes from postnuclear supernatants and a simultaneous accumulation of monosomes was observed. The protein-synthesizing activities of normal and infected cells were inversely proportional to the monosome concentrations of their corresponding extracts. Qualitatively, protein synthesis in intact cells and in postnuclear supernatants responded similarly to mengovirus infection. In both cases an initial reduction of host-specific amino acid incorporation was followed by a burst of viral protein synthesis. However, the two activity vs. time curves showed the following significant differences: 1) The activities of extracts from control cells and from mengovirus-infected cells nearly in the infectious cycle were low compared with the activities observed in vivo. 2) In the middle of the infectious cycle, the peak of viral protein synthesis occurred later and the activity was higher in vitro. 3) Finally, in the late period of the infectious cycle the postnuclear supernatants had considerable protein synthesizing activity, at a time when protein synthesis in vivo was nil.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008574 Mengovirus A strain of ENCEPHALOMYOCARDITIS VIRUS, a species of CARDIOVIRUS, isolated from rodents and lagomorphs and occasionally causing febrile illness in man. Mengo Virus,Virus, Mengo
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004589 Electrophoresis, Disc Electrophoresis in which discontinuities in both the voltage and pH gradients are introduced by using buffers of different composition and pH in the different parts of the gel column. The term 'disc' was originally used as an abbreviation for 'discontinuous' referring to the buffers employed, and does not have anything to do with the shape of the separated zones. Electrophoresis, Disk,Disc Electrophoresis,Disk Electrophoresis
D004769 Enterovirus Infections Diseases caused by ENTEROVIRUS. Infections, Enterovirus,Enterovirus Infection,Infection, Enterovirus

Related Publications

E Egberts, and P B Hackett, and P Traub
December 1977, European journal of biochemistry,
E Egberts, and P B Hackett, and P Traub
February 1978, Molecular biology reports,
E Egberts, and P B Hackett, and P Traub
October 1978, Molecular biology reports,
E Egberts, and P B Hackett, and P Traub
April 1970, Cell and tissue kinetics,
E Egberts, and P B Hackett, and P Traub
July 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E Egberts, and P B Hackett, and P Traub
November 1970, Biochimica et biophysica acta,
E Egberts, and P B Hackett, and P Traub
September 1972, The Journal of biological chemistry,
E Egberts, and P B Hackett, and P Traub
January 1973, European journal of cancer,
Copied contents to your clipboard!