Physical structure of herpes simplex virus tyep 1 DNA. 1975

I Hirsch, and J Roubal, and V Vonka

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009695 Nucleic Acid Renaturation The reformation of all, or part of, the native conformation of a nucleic acid molecule after the molecule has undergone denaturation. Acid Renaturation, Nucleic,Acid Renaturations, Nucleic,Nucleic Acid Renaturations,Renaturation, Nucleic Acid,Renaturations, Nucleic Acid
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis

Related Publications

I Hirsch, and J Roubal, and V Vonka
June 2006, The Journal of biological chemistry,
I Hirsch, and J Roubal, and V Vonka
August 1981, Journal of virology,
I Hirsch, and J Roubal, and V Vonka
October 2000, Virology,
I Hirsch, and J Roubal, and V Vonka
October 1990, Journal of virology,
I Hirsch, and J Roubal, and V Vonka
March 1978, Journal of virology,
I Hirsch, and J Roubal, and V Vonka
October 1968, Virology,
I Hirsch, and J Roubal, and V Vonka
January 1985, Biology of the cell,
I Hirsch, and J Roubal, and V Vonka
February 1982, Virology,
I Hirsch, and J Roubal, and V Vonka
January 1975, Cold Spring Harbor symposia on quantitative biology,
I Hirsch, and J Roubal, and V Vonka
January 1975, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!