Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. 2008

Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
Research Team for Molecular Biomarkers, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress-related diseases. This study examined the protective effects of Asx on 6-hydroxydopamine (6-OHDA)-induced apoptosis in the human neuroblastoma cell line SH-SY5Y. Pre-treatment of SH-SY5Y cells with Asx suppressed 6-OHDA-induced apoptosis in a dose-dependent manner. In addition, Asx strikingly inhibited 6-OHDA-induced mitochondrial dysfunctions, including lowered membrane potential and the cleavage of caspase 9, caspase 3, and poly(ADP-ribose) polymerase. In western blot analysis, 6-OHDA activated p38 MAPK, c-jun NH(2)-terminal kinase 1/2, and extracellular signal-regulated kinase 1/2, while Asx blocked the phosphorylation of p38 MAPK but not c-jun NH(2)-terminal kinase 1/2 and extracellular signal-regulated kinase 1/2. Pharmacological approaches showed that the activation of p38 MAPK has a critical role in 6-OHDA-induced mitochondrial dysfunctions and apoptosis. Furthermore, Asx markedly abolished 6-OHDA-induced reactive oxygen species generation, which resulted in the blockade of p38 MAPK activation and apoptosis induced by 6-OHDA treatment. Taken together, the present results indicated that the protective effects of Asx on apoptosis in SH-SY5Y cells may be, at least in part, attributable to the its potent antioxidative ability.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017304 Annexin A5 A protein of the annexin family isolated from human PLACENTA and other tissues. It inhibits cytosolic PHOSPHOLIPASE A2, and displays anticoagulant activity. Annexin V,Placental Anticoagulant Protein I,Anchorin CII,Calphobindin I,Endonexin II,Lipocortin V,Lipocortin-V
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
December 2013, Neurochemistry international,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
April 2006, Journal of neurochemistry,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
April 2011, Brain research,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
March 2012, Journal of clinical biochemistry and nutrition,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
June 2007, European journal of pharmacology,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
March 2021, Biomedicines,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
July 2015, Basic and clinical neuroscience,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
June 2005, Toxicology in vitro : an international journal published in association with BIBRA,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
July 2021, Metallomics : integrated biometal science,
Yasutaka Ikeda, and Shinji Tsuji, and Akira Satoh, and Masaharu Ishikura, and Takuji Shirasawa, and Takahiko Shimizu
December 2019, Archives of pharmacal research,
Copied contents to your clipboard!