Exonucleolytic proofreading of leading and lagging strand DNA replication errors. 1991

J D Roberts, and D C Thomas, and T A Kunkel
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

We have asked whether exonucleolytic proofreading occurs during simian virus 40 origin-dependent, bidirectional DNA replication in extracts of human HeLa cells. In addition, we have compared the fidelity of leading and lagging strand DNA synthesis. In a fidelity assay that scores single-base substitution errors that revert a TGA codon in the lacZ alpha gene in an M13mp vector, providing an excess of a single dNTP substrate over the other three dNTP substrates in a replication reaction generates defined, strand-specific errors. Fidelity measurements with two vectors having the origin of replication on opposite sides of the opal codon demonstrate that error rates for two different A.dCTP and T.dGTP mispairs increase when deoxyguanosine monophosphate is added to replication reaction mixtures or when the concentration of deoxynucleoside triphosphates is increased. The data suggest that exonucleolytic proofreading occurs on both strands during bidirectional replication. Measurements using the two simian virus 40 origin-containing vectors suggest that base substitution error rates are similar for replication of the leading and lagging strands.

UI MeSH Term Description Entries
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

J D Roberts, and D C Thomas, and T A Kunkel
January 1997, Postepy biochemii,
J D Roberts, and D C Thomas, and T A Kunkel
January 1996, Biochemistry,
J D Roberts, and D C Thomas, and T A Kunkel
January 2012, PLoS genetics,
J D Roberts, and D C Thomas, and T A Kunkel
September 2017, Bio-protocol,
J D Roberts, and D C Thomas, and T A Kunkel
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
J D Roberts, and D C Thomas, and T A Kunkel
August 2001, The Journal of biological chemistry,
J D Roberts, and D C Thomas, and T A Kunkel
May 2003, Science (New York, N.Y.),
J D Roberts, and D C Thomas, and T A Kunkel
October 2017, Molecular cell,
J D Roberts, and D C Thomas, and T A Kunkel
May 1999, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!