A hemopoietic specific gene encoding a small GTP binding protein is overexpressed during T cell activation. 1991

L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
Institut Cochin de Génétique Moléculaire, INSERM U. 257, Paris, France.

We have isolated, from a human B cell line cDNA library, a cDNA (Gx) encoding a small G protein identical to rac 2, a member of the ras superfamily. Gx/rac 2 gene is expressed as a unique mRNA of 1,7 Kb in peripheral blood lymphocytes, in purified B and T cells, in thymus as well as in several B and T cell lines. It is not expressed in many other tissues analysed including liver, brain, lung, heart and kidney. Upon in vitro stimulation with phytohemagglutinin A, peripheral blood lymphocytes show a clear increase of the Gx/rac 2 mRNA after 6 hours; a 30-50 fold accumulation is reached at 24 hours and persists thereafter. Purified T lymphocytes exhibit a similar increase in Gx/rac 2 mRNA expression upon mitogenic stimulation. Therefore, the expression of the Gx/rac 2 gene appears to be restricted to cells of the hemopoietic lineage and to be strongly stimulated during T cell activation. Gx/rac 2 protein must fulfill a specific role in activated T cells that could provide a new model for studying the function of small G proteins.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
February 1993, Molecular & general genetics : MGG,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
January 1994, Current genetics,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
December 1993, The Plant cell,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
August 1993, FEBS letters,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
January 1994, European journal of cancer (Oxford, England : 1990),
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
March 2001, The Journal of biological chemistry,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
December 2007, The Journal of biological chemistry,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
March 1992, FEBS letters,
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
November 1991, Science (New York, N.Y.),
L Reibel, and O Dorseuil, and R Stancou, and J Bertoglio, and G Gacon
December 1985, Cell,
Copied contents to your clipboard!