Stimulation of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme by L-triiodothyronine. Characteristics of the response with specific nuclear thyroid hormone binding sites fully saturated. 1977

J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks

Experiments were designed to analyze the relationship of a single i.v. dose of triiodothyronine (T3), the level of plasma and hepatic nuclear T3 attained, and the tissue response as reflected in increased activity of hepatic mitochondrial alpha-glycerophosphate dehydrogenase (alpha-GPD) and cytosol "malic enzyme" (ME). These studied were carried out in euthyroid rats by varying the dose of T3 injected and the time at which the animals were killed and the enzyme levels measured. The plasma T3 concentration was determined and the fraction of nuclear sites occupied at any time t was calculated from the known plasma:nuclear relationship. As a first step, the analysis was confined to the limiting situation in which all nuclear sites were effectively saturated. The following additional information was required and obtained: A proportional relationship between the half-neutralizing volume of a specific antiserum to malic enzyme and the activity of malic enzyme was established, thus confirming previous reports that the increase in enzyme activity induced by T3 is due to increased enzyme mass. The absolute refractory period immediately after i.v. injection of T3, during which no enzyme response could be detected, was determined. This was shown to be 13.4 h for alpha-GPD and 8.2 h for ME. Lastly, the t1/2 of the enzyme decay after pulse injection of T3 was measured. This was similar for both enzymes, 2.8+/-0.6 (SD) days for alpha-GPD and 2.7+/-0.6 (SD) days for ME. The results of these studies indicated that the extent of hepatic response appears limited by full occupancy of a set of intracellular receptor sites by T3 which is in rapid equilibrium with the plasma hormone pool. The kinetic properties of the receptors, as functionally defined in these studies, resemble those associated with the recently described specific nuclear T3 sites. These data per se are thus compatible with but do not prove a nuclear site of initiation of hormone effect. Thye do allow the development of an internally consistent mathematical model which permits prediction of enzyme response when the receptor sites are fully occupied for a given length of time after the i.v. injection of hormone. A separate series of studies was carried out in thyroidectomized rats. The response characteristics of alpha-GPD were similar to those observed in euthyroid animals. In contrast, however, the early response of ME to pulse injections of T3 was very much reduced in hypothyroid animals as compared to euthryoid animals in which nuclear sites were saturated for comparable periods. These findings raise the possibility that a factor required for the induction of malic enzyme but not alpha-GPD is deficient in the hypothyroid state.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme

Related Publications

J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
September 1964, Biochimica et biophysica acta,
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
January 1987, Acta physiologica Hungarica,
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
August 1986, Biochimica et biophysica acta,
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
November 1981, The Journal of biological chemistry,
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
October 1965, Endocrinology,
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
October 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J H Oppenheimer, and E Silva, and H L Schwartz, and M I Surks
August 1966, Biochimica et biophysica acta,
Copied contents to your clipboard!