Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. 1991

H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
Department of Neurology, Karolinska Institutet, Huddinge University Hospital, Stockholm.

Myasthenia gravis (MG) is strongly associated with antibodies to acetylcholine receptor (AChR), whereas the extent of T cell involvement is not settled. The number of cells secreting interferon-gamma (IFN-gamma) in response to AChR during 48 h culture of blood mononuclear cells (PBL) may reflect AChR-reactive T cells. Using an immunospot assay, we detected such cells in 23 of 30 patients with MG at a mean number of 1 per 33.333 PBL. AChR-reactive T cells were also found in patients with other neurological diseases (OND) and in healthy subjects but at lower frequencies and numbers. The T cell response to purified protein derivative and to PHA, and also to two major myelin proteins (basic protein and proteolipid protein) did not differ between MG and the two control groups, underlining the specificity of an augmented T cell reactivity to AChR in MG. Evaluation of the B cell response by enumerating anti-AChR IgG antibody secreting cells revealed such cells in 27 of 28 patients with MG at a mean value of 1 per 14,085 PBL. Cells secreting anti-AChR antibodies of the IgA and IgM isotypes were also detected in MG, but less frequently, at lower numbers, and only in conjunction with IgG antibody secreting cells. Anti-AChR antibody secreting cells were also found among patient with OND and in healthy controls, but at lower frequencies and numbers. These data confirm that AChR is a major target for autoimmune response in MG.

UI MeSH Term Description Entries
D007132 Immunoglobulin Isotypes The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties. Antibody Class,Ig Isotype,Ig Isotypes,Immunoglobulin Class,Immunoglobulin Isotype,Antibody Classes,Immunoglobulin Classes,Class, Antibody,Class, Immunoglobulin,Classes, Antibody,Classes, Immunoglobulin,Isotype, Ig,Isotype, Immunoglobulin,Isotypes, Ig,Isotypes, Immunoglobulin
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008297 Male Males
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D009422 Nervous System Diseases Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle. Neurologic Disorders,Nervous System Disorders,Neurological Disorders,Disease, Nervous System,Diseases, Nervous System,Disorder, Nervous System,Disorder, Neurologic,Disorder, Neurological,Disorders, Nervous System,Disorders, Neurologic,Disorders, Neurological,Nervous System Disease,Nervous System Disorder,Neurologic Disorder,Neurological Disorder
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D005260 Female Females

Related Publications

H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
June 1993, Annals of the New York Academy of Sciences,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
August 1991, Neurology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
November 1991, Neurology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
January 1986, Annals of neurology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
March 1994, Journal of neuroimmunology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
February 1993, Journal of neuroimmunology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
January 1976, Annals of the New York Academy of Sciences,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
December 1975, Harefuah,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
November 1981, Clinical and experimental immunology,
H Link, and O Olsson, and J Sun, and W Z Wang, and G Andersson, and H P Ekre, and T Brenner, and O Abramsky, and T Olsson
January 2022, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Copied contents to your clipboard!