Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. 2008

Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany.

PrfA is the major transcriptional activator of most virulence genes of Listeria monocytogenes. Its activity is modulated by a variety of culture conditions. Here, we studied the PrfA activity in the L. monocytogenes wild-type strain EGD and an isogenic prfA deletion mutant (EGDDeltaprfA) carrying multiple copies of the wild-type prfA or the mutant prfA* gene (strains EGDDeltaprfApPrfA and EGDDeltaprfApPrfA*) in response to growth in brain heart infusion (BHI), Luria-Bertani broth (LB) or a defined minimal medium (MM) supplemented with one of the three phosphotransferase system (PTS) carbohydrates, glucose, mannose and cellobiose, or the non-PTS carbon source glycerol. Low PrfA activity was observed in the wild-type strain in BHI and LB with all of these carbon sources, while PrfA activity was high in minimal medium in the presence of glycerol. EGDDeltaprfApPrfA*, expressing a large amount of PrfA* protein, showed high PrfA activity under all growth conditions. In contrast, strain EGDDeltaprfApPrfA, expressing an equally high amount of PrfA protein, showed high PrfA activity only when cultured in BHI, and not in LB or MM (in the presence of any of the carbon sources). A ptsH mutant (lacking a functional HPr) was able to grow in BHI but not in LB or MM, regardless of which of the four carbon sources was added, suggesting that in LB and MM the uptake of the used PTS carbohydrates and the catabolism of glycerol are fully dependent on the functional common PTS pathway. The BHI culture medium, in contrast, apparently contains carbon sources (supporting listerial growth) which are taken up and metabolized by L. monocytogenes independently of the common PTS pathway. The growth rates of L. monocytogenes were strongly reduced in the presence of large amounts of PrfA (or PrfA*) protein when growing in MM, but were less reduced in LB and only slightly reduced in BHI. The expression of the genes encoding the PTS permeases of L. monocytogenes was determined in the listerial strains under the applied growth conditions. The data obtained further support the hypothesis that PrfA activity correlates with the expression level and the phosphorylation state of specific PTS permeases.

UI MeSH Term Description Entries
D008089 Listeria monocytogenes A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010454 Peptide Termination Factors Proteins that are involved in the peptide chain termination reaction (PEPTIDE CHAIN TERMINATION, TRANSLATIONAL) on RIBOSOMES. They include codon-specific class-I release factors, which recognize stop signals (TERMINATOR CODON) in the MESSENGER RNA; and codon-nonspecific class-II release factors. Termination Release Factor,Factor, Termination Release,Factors, Peptide Termination,Release Factor, Termination,Termination Factors, Peptide
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D020411 Oligonucleotide Array Sequence Analysis Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING. DNA Microarrays,Gene Expression Microarray Analysis,Oligonucleotide Arrays,cDNA Microarrays,DNA Arrays,DNA Chips,DNA Microchips,Gene Chips,Oligodeoxyribonucleotide Array Sequence Analysis,Oligonucleotide Microarrays,Sequence Analysis, Oligonucleotide Array,cDNA Arrays,Array, DNA,Array, Oligonucleotide,Array, cDNA,Arrays, DNA,Arrays, Oligonucleotide,Arrays, cDNA,Chip, DNA,Chip, Gene,Chips, DNA,Chips, Gene,DNA Array,DNA Chip,DNA Microarray,DNA Microchip,Gene Chip,Microarray, DNA,Microarray, Oligonucleotide,Microarray, cDNA,Microarrays, DNA,Microarrays, Oligonucleotide,Microarrays, cDNA,Microchip, DNA,Microchips, DNA,Oligonucleotide Array,Oligonucleotide Microarray,cDNA Array,cDNA Microarray
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
June 2006, Journal of bacteriology,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
March 1994, Molecular microbiology,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
October 1961, Journal of bacteriology,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
May 2024, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology],
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
January 1967, Giornale di batteriologia, virologia, ed immunologia ed annali dell'Ospedale Maria Vittoria di Torino,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
May 2009, Infection and immunity,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
June 2004, Molecular microbiology,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
July 2002, Infection and immunity,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
December 2023, Environmental microbiology reports,
Regina Stoll, and Sonja Mertins, and Biju Joseph, and Stefanie Müller-Altrock, and Werner Goebel
January 1997, Revista Argentina de microbiologia,
Copied contents to your clipboard!