The action of halothane on stimulus-secretion coupling in clonal (GH3) pituitary cells. 1991

R C Stern, and J Herrington, and C J Lingle, and A S Evers
Department of Anesthesiology Research, Washington University School of Medicine, St. Louis, Missouri 63110.

The effect of halothane on the physiological response to excitatory stimuli was assessed in clonal (GH3) pituitary cells. Halothane, at concentrations used to produce general anesthesia in animals (0.25-0.76 mM), inhibited thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion. The sustained (extracellular calcium-dependent) phase of PRL secretion was 70 +/- 7% inhibited by the highest concentration of halothane tested (0.76 mM); 50% inhibition was produced by approximately 0.4 mM halothane. The early (largely inositol trisphosphate-mediated) phase of secretion was less sensitive to halothane; 0.76 mM halothane produced 18 +/- 2% inhibition of the early phase of secretion. Consistent with these observations, halothane inhibited (IC50 approximately 0.45 mM) the sustained phase of the TRH-induced rise in intracellular calcium ([Ca2+]i) to a greater extent than the initial [Ca2+]i peak. The sustained phase of the [Ca2+]i elevation was inhibited by 75 +/- 7% at the highest concentration of halothane tested (0.76 mM), whereas the peak [Ca2+]i was only inhibited by 14 +/- 5%, consistent with the observation that halothane did not inhibit TRH-stimulated inositide hydrolysis in these cells. Halothane (0.5 mM) did not inhibit phorbol ester- or ionomycin-induced PRL secretion, indicating that halothane has inconsequential effects on the secretory apparatus. Halothane (0.5 mM) also inhibited KCl-induced PRL secretion by 50-80% and the corresponding KCl-induced rise in [Ca2+]i by 68 +/- 6%. These data indicate that halothane inhibits secretagogue-stimulated PRL secretion by reducing the elevation of [Ca2+]i produced by calcium (Ca2+) influx.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan

Related Publications

R C Stern, and J Herrington, and C J Lingle, and A S Evers
January 1991, Annals of the New York Academy of Sciences,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
January 1991, Annals of the New York Academy of Sciences,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
January 1991, Annals of the New York Academy of Sciences,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
January 1987, British journal of pharmacology,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
October 1988, The Journal of pharmacology and experimental therapeutics,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
January 2010, Hormone molecular biology and clinical investigation,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
November 1987, Pflugers Archiv : European journal of physiology,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
March 1994, Annals of the New York Academy of Sciences,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
September 1988, British journal of pharmacology,
R C Stern, and J Herrington, and C J Lingle, and A S Evers
July 2001, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!