In vitro and in vivo evaluation of Ro 09-1428, a new parenteral cephalosporin with high antipseudomonal activity. 1991

M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
Department of Chemotherapy and Biochemistry, Nippon Roche Research Center, Japan.

Ro 09-1428, a new parenteral cephalosporin with a catechol moiety attached at position 7 of the cephalosporin ring, showed high in vitro activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, and Streptococcus pyogenes, with MICs for 90% of strains tested (MIC90s) of less than or equal to 0.39 micrograms/ml. Morganella morganii, Providencia rettgeri, Citrobacter freundii, Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae were inhibited with MIC90s of less than or equal to 3.13 micrograms/ml. Serratia marcescens was less susceptible to Ro 09-1428, with a MIC90 of 25 micrograms/ml. The most distinctive feature of Ro 09-1428 was its potent activity against Pseudomonas aeruginosa and Acinetobacter calcoaceticus, with MIC90s of 0.39 and 6.25 micrograms/ml, respectively. Most of the ceftazidime-resistant strains of P. aeruginosa, E. cloacae, and C. freundii were inhibited by Ro 09-1428, while those of S. marcescens were resistant at a concentration of 12.5 micrograms/ml. Ro 09-1428 was more active than ceftazidime against staphylococci. PBP 3 was the most sensitive target in E. coli and P. aeruginosa. The response to ferric iron in growth medium suggests that Ro 09-1428 may be taken up by transport mechanisms similar to those of other catechol cephalosporins. In accordance with its in vitro activity, Ro 09-1428 activity was equal to or greater than ceftazidime activity in efficacy against experimental septicemias in mice. The results indicate that Ro 09-1428 is a broad-spectrum cephalosporin with advantages over ceftazidime in its activity against P. aeruginosa, staphylococci, and ceftazidime-resistant strains of C. freundii and E. cloacae.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010458 Peptidyl Transferases Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases. Peptidyl Transferase,Peptidyl Translocase,Peptidyl Translocases,Peptidyltransferase,Transpeptidase,Transpeptidases,Peptidyltransferases,Transferase, Peptidyl,Transferases, Peptidyl,Translocase, Peptidyl,Translocases, Peptidyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002267 Muramoylpentapeptide Carboxypeptidase Enzyme which catalyzes the peptide cross-linking of nascent CELL WALL; PEPTIDOGLYCAN. Carboxypeptidase Transpeptidase,Carboxypeptidase, Muramoylpentapeptide,Transpeptidase, Carboxypeptidase
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002442 Ceftazidime Semisynthetic, broad-spectrum antibacterial derived from CEPHALORIDINE and used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime Anhydrous,Ceftazidime Pentahydrate,Fortaz,Fortum,GR-20263,LY-139381,Pyridinium, 1-((7-(((2-amino-4-thiazolyl)((1-carboxy-1-methylethoxy)imino)acetyl)amino)-2-carboxy-8-oxo-5-thia-1-azabicyclo(4.2.0)oct-2-en-3-yl)methyl)-, inner salt, pentahydrate, (6R-(6alpha,7beta(Z)))-,Tazidime,GR 20263,GR20263,LY 139381,LY139381
D002511 Cephalosporins A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid. Antibiotics, Cephalosporin,Cephalosporanic Acid,Cephalosporin,Cephalosporin Antibiotic,Cephalosporanic Acids,Acid, Cephalosporanic,Acids, Cephalosporanic,Antibiotic, Cephalosporin,Cephalosporin Antibiotics
D006602 Hexosyltransferases Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
January 1992, Clinical therapeutics,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
August 1991, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
May 1988, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
January 1992, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
December 1990, The Journal of antimicrobial chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
July 1985, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
February 1983, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
September 1989, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
August 1989, Antimicrobial agents and chemotherapy,
M Arisawa, and Y Sekine, and S Shimizu, and H Takano, and P Angehrn, and R L Then
October 1985, The Journal of antimicrobial chemotherapy,
Copied contents to your clipboard!