Interferon-alpha overrides the deficient adhesion of chronic myeloid leukemia primitive progenitor cells to bone marrow stromal cells. 1991

C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
MRC/LRF Leukaemia Unit, Royal Postgraduate Medical School, London, UK.

Primitive blast colony-forming cells (BI-CFC) from chronic myeloid leukemia (CML) patients are defective in their attachment to bone marrow-derived stromal cells compared with normal BI-CFC. We investigated the effect of recombinant interferon-alpha 2a (IFN-alpha) on this interaction between hematopoietic progenitor cells and bone marrow-derived stromal cells by culturing normal stromal cells with IFN-alpha (50 to 5,000 U/mL). At 50 U/mL we found that: (1) the capacity of stromal cells to bind two types of CML primitive progenitor cells (BI-CFC and long-term culture-initiating cells) was increased; and (2) the amount of sulfated glycosaminoglycans (GAGs) in the stromal layer was increased. However, sulfated GAGs were not directly involved in binding CML BI-CFC, unlike binding by normal BI-CFC, which is sulfated GAG-dependent. Neuraminidase-treated control stromal cells bound an increased number of CML BI-CFC, reproducing the effect of IFN-alpha, whereas the binding to IFN-alpha-treated stromal cells was unaffected by neuraminidase treatment. Thus, the enhanced attachment by primitive CML progenitor cells to INF-alpha-treated stromal cells might be due to changes in the neuraminic acid composition in the stromal cell layer. Our in vitro evidence may provide insights into the mechanism of action of IFN-alpha in vivo. Prolonged administration may alter the marrow microenvironment in some patients such that it can restrain the aberrant proliferation of Philadelphia chromosome (Ph)-positive stem cells while permitting Ph-negative stem cells to function normally.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077190 Interferon alpha-2 Alpha interferon encoded by the human IFNA2 gene. Recombinant forms are used in the treatment of CHRONIC HEPATITIS B; CHRONIC HEPATITIS C; KAPOSI SARCOMA; MELANOMA; and HAIRY CELL LEUKEMIA. IFN-alpha 2,IFN-alpha-2,IFNalpha-2b, Recombinant,Interferon alfa-2a,Interferon alfa-2b,Interferon alpha-2b, Recombinant,Interferon alpha-A,Interferon-alpha 2,Intron A (Interferon),LeIF A,Reaferon,Recombinant Interferon alpha-2a,Recombinant Interferon alpha-2b,Ro 22-8181,Roferon-A,Sch-30500,Viferon,IFNalpha 2b, Recombinant,Interferon alfa 2a,Interferon alfa 2b,Interferon alpha 2,Interferon alpha 2b, Recombinant,Interferon alpha A,Interferon alpha-2a, Recombinant,Recombinant IFNalpha-2b,Recombinant Interferon alpha 2a,Recombinant Interferon alpha 2b,Ro 22 8181,Ro 228181,Roferon A,RoferonA,Sch 30500,Sch30500

Related Publications

C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
February 1993, Blood,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
March 1999, Bone marrow transplantation,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
December 1997, British journal of haematology,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
November 2001, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
January 1996, Hematopathology and molecular hematology,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
January 2014, Frontiers in bioscience (Landmark edition),
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
August 1992, Blood,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
June 2018, Journal of cell communication and signaling,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
January 2000, The hematology journal : the official journal of the European Haematology Association,
C Dowding, and A P Guo, and J Osterholz, and M Siczkowski, and J Goldman, and M Gordon
March 1997, Fortschritte der Medizin,
Copied contents to your clipboard!