The non-anaesthetic propofol analogue 2,6-di-tert-butylphenol fails to modulate GABA(A) receptor function. 2009

Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
Department of Anaesthesiology, Hannover Medical School, Hannover, Germany. ahrens.j@mh-hannover.de

Modulation of inhibitory synaptic transmission within the central nervous system contributes considerably to the anaesthetic effects of propofol and its analogues in vivo. We have studied the effects of the non-anaesthetic propofol analogue 2,6-di-tert-butylphenol on rat alpha(1)beta(2)gamma(2) GABA(A) receptors expressed in a mammalian expression system (HEK 293 cells) using the whole-cell patch clamp technique. Our experiments showed that 2,6-di-tert-butylphenol completely lacks co-activation and direct activation of the inhibitory GABA(A) receptor. Our results support the assumption that modulation of inhibitory GABA(A) receptor function is responsible for the anaesthetic effects of propofol in vivo.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015742 Propofol An intravenous anesthetic agent which has the advantage of a very rapid onset after infusion or bolus injection plus a very short recovery period of a couple of minutes. (From Smith and Reynard, Textbook of Pharmacology, 1992, 1st ed, p206). Propofol has been used as ANTICONVULSANTS and ANTIEMETICS. Disoprofol,2,6-Bis(1-methylethyl)phenol,2,6-Diisopropylphenol,Aquafol,Diprivan,Disoprivan,Fresofol,ICI-35,868,ICI-35868,Ivofol,Propofol Abbott,Propofol Fresenius,Propofol MCT,Propofol Rovi,Propofol-Lipuro,Recofol,2,6 Diisopropylphenol,ICI 35,868,ICI 35868,ICI35,868,ICI35868
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
March 2003, European journal of anaesthesiology,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
November 2005, Acta crystallographica. Section C, Crystal structure communications,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
March 2018, Metallomics : integrated biometal science,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
January 2010, Bioinorganic chemistry and applications,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
May 2004, Huan jing ke xue= Huanjing kexue,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
December 2023, Molecules (Basel, Switzerland),
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
January 2008, Journal of inorganic biochemistry,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
January 2005, Journal of environmental sciences (China),
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
September 2003, Bioorganic & medicinal chemistry,
Jörg Ahrens, and Martin Leuwer, and Jeanne de la Roche, and Nilufar Foadi, and Klaus Krampfl, and Gertrud Haeseler
August 2019, Environmental pollution (Barking, Essex : 1987),
Copied contents to your clipboard!