Kinetic proofreading model. 2008

Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
Theoretical Biology and Biophysics Group, T-10 MS K710, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 875435, USA. bxg@lanl.gov

Kinetic proofreading is an intrinsic property of the cell signaling process. It arises as a consequence of the multiple interactions that occur after a ligand triggers a receptor to initiate a ignaling cascade and it ensures that false signals do not propagate to completion. In order for an active signaling complex to form after a ligand binds to a cell surface receptor, a sequence of binding and phosphorylation events must occur that are rapidly reversed if the ligand dissociates from the receptor. This gives rise to a mechanism by which cells can discriminate among ligands that bind to the same receptor but form ligand-receptor complexes with different lifetimes. We review experiments designed to test for kinetic proofreading and models that exhibit kinetic proofreading.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017455 Receptors, IgE Specific molecular sites on the surface of B- and T-lymphocytes which combine with IgEs. Two subclasses exist: low affinity receptors (Fc epsilon RII) and high affinity receptors (Fc epsilon RI). Antigens, CD23,CD23 Antigens,Fc Receptors, epsilon,Fc epsilon Receptor,Fc epsilon Receptors,IgE Receptor,IgE Receptors,Receptors, Fc epsilon,epsilon Fc Receptor,epsilon Fc Receptors,CD 23 Antigens,CD23 Antigen,Fc epsilon RI,Fc epsilon RII,Immunoglobulin E Receptor,Antigen, CD23,Antigens, CD 23,Fc Receptor, epsilon,Receptor, Fc epsilon,Receptor, IgE,Receptor, Immunoglobulin E,Receptor, epsilon Fc,Receptors, epsilon Fc,epsilon RI, Fc,epsilon RII, Fc,epsilon Receptor, Fc,epsilon Receptors, Fc
D018448 Models, Immunological Theoretical representations that simulate the behavior or activity of immune system, processes, or phenomena. They include the use of mathematical equations, computers, and other electrical equipment. Immunological Models,Immunologic Model,Model, Immunologic,Immunologic Models,Immunological Model,Model, Immunological,Models, Immunologic

Related Publications

Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
June 2022, Annual review of biochemistry,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
February 2021, Journal of pharmacokinetics and pharmacodynamics,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
June 2019, Nature immunology,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
June 2012, Theory in biosciences = Theorie in den Biowissenschaften,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
June 2001, Proceedings of the National Academy of Sciences of the United States of America,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
December 2019, The journal of physical chemistry. B,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
June 2001, Proceedings of the National Academy of Sciences of the United States of America,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
January 2017, Journal of physics. Condensed matter : an Institute of Physics journal,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
October 2004, Nature structural & molecular biology,
Byron Goldstein, and Daniel Coombs, and James R Faeder, and William S Hlavacek
January 1978, American scientist,
Copied contents to your clipboard!