L-pilin variants of Neisseria gonorrhoeae MS11. 1991

P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
Department of Microbiology and Immunology, University of Adelaide, Australia.

Phase- and antigenic variation of pilin expression in Neisseria gonorrhoeae is based on the genetic exchange between silent pilin genes (pilS) and the pilin expression locus (pilE). Similarly, the non-piliated L-variants of strain MS11, which show an increased resistance to certain antibiotics, are the result of recombination with the pilE locus. However, this recombination is atypical in that pilE(L) carries a tandem arrangement of a complete pilin gene and additional partial pilin genes under the control of the same pilE promoter. Since the two pilin gene copies are tandemly arranged and are often in the same translational frame, oversized pilin molecules are produced, which do not assemble into pili. The tandem gene copies introduced in a pilE(L) locus originate from silent loci where they are already joint. Upon reversion to the P+ phenotype the L-variants lose one pilin gene copy from the pilE(L) in a process reminiscent of the deletion events that otherwise lead to the formation of the non-revertible and non-piliated Pn mutants of MS11 gonococci. Thus deletion of pilin genes from pilE can be regarded as a third mechanism of pilin variation in gonococci.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000940 Antigenic Variation Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed) Antigen Switching,Antigenic Diversity,Variation, Antigenic,Antigen Variation,Antigenic Switching,Antigenic Variability,Switching, Antigenic,Diversity, Antigenic,Switching, Antigen,Variability, Antigenic,Variation, Antigen
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial

Related Publications

P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
June 2009, FEMS microbiology letters,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
January 1992, Molecular microbiology,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
February 1996, Molecular & general genetics : MGG,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
April 1988, Vaccine,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
February 1999, Microbiology (Reading, England),
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
June 2004, Microbes and infection,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
April 1998, Journal of bacteriology,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
October 1991, Molecular microbiology,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
January 1987, Antonie van Leeuwenhoek,
P A Manning, and A Kaufmann, and U Roll, and J Pohlner, and T F Meyer, and R Haas
August 1992, Journal of bacteriology,
Copied contents to your clipboard!