Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster. 2009

Binbin Ren, and Xuewu Duan, and Huangen Ding
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.

The Escherichia coli DNA damage-inducible protein DinG, a member of the superfamily 2 DNA helicases, has been implicated in the nucleotide excision repair and recombinational DNA repair pathways. Combining UV-visible absorption, EPR, and enzyme activity measurements, we demonstrate here that E. coli DinG contains a redox-active [4Fe-4S] cluster with a midpoint redox potential (E(m)) of -390 +/- 23 mV (pH 8.0) and that reduction of the [4Fe-4S] cluster reversibly switches off the DinG helicase activity. Unlike the [4Fe-4S] cluster in E. coli dihydroxyacid dehydratase, the DinG [4Fe-4S] cluster is stable, and the enzyme remains fully active after exposure to 100-fold excess of hydrogen peroxide, indicating that DinG could be functional under oxidative stress conditions. However, the DinG [4Fe-4S] cluster can be efficiently modified by nitric oxide (NO), forming the DinG-bound dinitrosyl iron complex with the concomitant inactivation of helicase activity in vitro and in vivo. Reassembly of the [4Fe-4S] cluster in NO-modified DinG restores helicase activity, indicating that the iron-sulfur cluster in DinG is the primary target of NO cytotoxicity. The results led us to propose that the iron-sulfur cluster in DinG may act as a sensor of intracellular redox potential to modulate its helicase activity and that modification of the iron-sulfur cluster in DinG and likely in other DNA repair enzymes by NO may contribute to NO-mediated genomic instability.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013455 Sulfur An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine. Sulfur-16,Sulfur 16
D042822 Genomic Instability An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional. Genome Instability,Genome Stability,Genomic Stability,Genome Instabilities,Genome Stabilities,Genomic Instabilities,Genomic Stabilities,Instabilities, Genome,Instabilities, Genomic,Instability, Genome,Instability, Genomic,Stabilities, Genome,Stabilities, Genomic,Stability, Genome,Stability, Genomic

Related Publications

Binbin Ren, and Xuewu Duan, and Huangen Ding
April 2016, The Journal of biological chemistry,
Binbin Ren, and Xuewu Duan, and Huangen Ding
December 1992, The Journal of biological chemistry,
Binbin Ren, and Xuewu Duan, and Huangen Ding
July 2003, The Journal of biological chemistry,
Binbin Ren, and Xuewu Duan, and Huangen Ding
January 2014, BioMed research international,
Binbin Ren, and Xuewu Duan, and Huangen Ding
May 2012, Nucleic acids research,
Binbin Ren, and Xuewu Duan, and Huangen Ding
December 2018, Antioxidants & redox signaling,
Binbin Ren, and Xuewu Duan, and Huangen Ding
December 2017, Antioxidants & redox signaling,
Binbin Ren, and Xuewu Duan, and Huangen Ding
April 2010, The Biochemical journal,
Binbin Ren, and Xuewu Duan, and Huangen Ding
August 2014, The Journal of biological chemistry,
Copied contents to your clipboard!