Electroporation and conjugal plasmid transfer to members of the genus Aquaspirillum. 1991

P A Eden, and R P Blakemore
Department of Microbiology, University of New Hampshire, Durham 03824.

Electroporation methods and conjugal matings were used to transfer several plasmid vectors to Aquaspirillum dispar and Aquaspirillum itersonii. The incompatibility P class plasmid RP4 was conjugally transferred from Escherichia coli HB101 to these spirilla, and the transconjugants subsequently donated the molecule to plasmid-free E. coli and A. dispar strains via conjugal matings. High-voltage electrotransformation was used to transfer plasmids pUCD2, pSa151 and RP4 to A. dispar and A. itersonii, at efficiencies as high as 3 x 10(4) transformants per micrograms plasmid DNA. RP4 DNA isolated from spirillum hosts, but not RP4 from E. coli cells was successfully transferred to A. dispar and A. itersonii by electrotransformation, suggesting that modification and/or restriction activity may be present in these Aquaspirillum species.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

P A Eden, and R P Blakemore
March 1977, Science (New York, N.Y.),
P A Eden, and R P Blakemore
August 1977, Biochemical and biophysical research communications,
P A Eden, and R P Blakemore
January 1985, Basic life sciences,
P A Eden, and R P Blakemore
January 1985, Journal of bacteriology,
P A Eden, and R P Blakemore
July 1978, Proceedings of the National Academy of Sciences of the United States of America,
P A Eden, and R P Blakemore
January 1981, Acta microbiologica Academiae Scientiarum Hungaricae,
P A Eden, and R P Blakemore
September 1981, Antimicrobial agents and chemotherapy,
P A Eden, and R P Blakemore
September 1980, Journal of bacteriology,
P A Eden, and R P Blakemore
January 1985, Annales de l'Institut Pasteur. Microbiologie,
Copied contents to your clipboard!