Adenosine receptors mediate a pertussis toxin-insensitive prejunctional inhibition of noradrenaline release on a papillary muscle model. 1991

W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
Institute of Pharmacology, University of Vienna, Wien, Austria.

The effects of adenosine receptor agonists and antagonists on field-stimulated release of radioactivity from superfused guinea-pig papillary muscles preincubated with [3H] noradrenaline were studied. N6-cyclopentyladenosine (CPA), N6-(R-phenylisopropyl)-adenosine, and 5'-N-ethylcarboxamidoadenosine caused concentration-dependent inhibition of evoked overflow with a rank order of potency typical for interaction of the compounds with the A1-subtype of adenosine receptors. Maximum inhibition was 80%. The A1-selective antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX) induced a rightward shift of the concentration-response curve for CPA with a pA2 of 8.35. However, DPCPX per se had no effect on stimulation-evoked tritium overflow. On the other hand, in the presence of 4-nitrobenzylthioinosine (2 mumol/l) and deoxycoformycin (1 mumol/l), inhibitors of adenosine uptake and deamination, respectively, DPCPX produced a concentration-dependent increase in overflow with a pD2 of 8.1. Pretreatment of the animals with pertussis toxin caused a substantial reduction in the activity of toxin-sensitive G proteins, as indicated by a lack of [32P]ADP ribosylation in a ventricular membrane preparation. Nevertheless, the inhibitory effect of the adenosine receptor agonists on stimulus-evoked overflow remained unaffected. These results are compatible with the existence of inhibitory prejunctional adenosine receptors in guinea-pig papillary muscle, which appear to be coupled to a pertussis toxin-insensitive G protein. The role of endogenous adenosine in occupying these receptors seems minimal under basal conditions.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
January 1985, Nature,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
January 2003, British journal of pharmacology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
December 1989, Naunyn-Schmiedeberg's archives of pharmacology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
September 1978, The Journal of physiology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
February 1994, Experimental eye research,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
April 2000, British journal of pharmacology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
May 1999, British journal of pharmacology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
December 2002, Neurochemical research,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
July 1996, European journal of pharmacology,
W Schütz, and M Ströher, and M Freissmuth, and B Valenta, and E A Singer
April 1992, The American journal of physiology,
Copied contents to your clipboard!