Changes in calmodulin immunocytochemical localization associated with capacitation and acrosomal exocytosis of ram spermatozoa. 2009

C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain.

The aim of this study was to determine the localization of calmodulin (CaM) in ram sperm and the possible changes during in vitro capacitation (CA) and the ionophore-induced acrosome reaction (AR). Likewise, changes in intracellular calcium levels ([Ca(2+)](i)) were also analysed by using flow cytometry. CA was induced in vitro in a medium containing BSA, CaCl(2), NaHCO(3), and AR by the addition of the calcium ionophore A23187. The acrosomal status was assessed by the chlortetracycline-fluorescence (CTC) assay. Flow cytometry (FC) analyses were performed by loading samples with Fluo-3 AM, that emits fluorescence at a high [Ca(2+)](i), combined with propidium iodide (PI) that allowed us to discriminate sperm with/without an integral plasma membrane both with high/low [Ca(2+)](i). Immunocytochemistry localized CaM to the flagellum, and some sperm also contained CaM in the head (equatorial and post-acrosomal regions). CA and AR resulted in a slight increase in the post-acrosomal labelling. The treatment of sperm with increasing concentrations of two CaM antagonists, W7 and calmidazolium (CZ), accounted for an increase in capacitated and acrosome-reacted CTC-sperm patterns. CZ induced a significant reduction in the content of three protein tyrosine-phosphorylated bands of approximately of 30, 40 and 45kDa. However, W7 showed no significant effect at any of the studied concentrations. Neither of them significantly influenced protein serine and threonine phosphorylation. FC analysis revealed that the main subpopulation in the control samples contained 70% of the total sperm with integral plasma membrane and a medium [Ca(2+)](i). After CA, 67.1% of the sperm preserved an integral membrane with a higher [Ca(2+)](i). After AR, only 7.2% of the total sperm preserved intact membranes with a very high [Ca(2+)](i). These results imply that CaM appears to be involved in ram sperm capacitation, and both treatments increased its localization in the post-acrosomal region.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000177 Acrosome The cap-like structure covering the anterior portion of SPERM HEAD. Acrosome, derived from LYSOSOMES, is a membrane-bound organelle that contains the required hydrolytic and proteolytic enzymes necessary for sperm penetration of the egg in FERTILIZATION. Acrosomes

Related Publications

C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
February 1997, Tissue & cell,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
April 1996, Theriogenology,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
March 1993, Journal of reproduction and fertility,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
November 1975, Journal of reproduction and fertility,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
August 1986, Development, growth & differentiation,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
March 2002, Theriogenology,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
January 1983, Journal of andrology,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
February 1974, Journal of reproduction and fertility,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
September 1998, Molecular reproduction and development,
C Colás, and P Grasa, and A Casao, and M Gallego, and J A Abecia, and F Forcada, and J A Cebrián-Pérez, and T Muiño-Blanco
November 1999, Biology of reproduction,
Copied contents to your clipboard!