Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. 2009

G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
Department of Physiology, Development and Neuroscience, University of Cambridge, UK. gjb2@cam.ac.uk

The pregnancy complications of unexplained intrauterine growth restriction and early onset preeclampsia are thought to share a common aetiology in placental malperfusion secondary to deficient maternal spiral artery conversion. A key question is whether the contrasting clinical manifestations reflect different placental pathologies, or whether they are due to altered maternal responses to a common factor derived from the placenta. Recently, molecular evidence of protein synthesis inhibition secondary to endoplasmic reticulum stress has provided an explanation for the small placental phenotype in both conditions. However, other pathways activated by more severe endoplasmic reticulum stress are only observed in placentas from pregnancies associated with early onset preeclampsia. Here, we review the literature and conclude that there is evidence of greater maternal vascular compromise of the placenta in these cases. We speculate that in cases of normotensive intrauterine growth restriction the placental pathology is centred predominantly around endoplasmic reticulum stress, whereas in cases complicated by preeclampsia oxidative stress is further superimposed. This causes the release of a potent mix of pro-inflammatory cytokines, anti-angiogenic factors and trophoblastic aponecrotic debris into the maternal circulation that causes the peripheral syndrome. Maternal and fetal constitutional factors may modulate how the placenta responds to the maternal vascular insult, and how the mother is affected by the placental factors released. However, the principal conclusion is that the difference between these two conditions lies in the severity of the initiating deficit in spiral arterial conversion, and the relative degrees of endoplasmic reticulum stress and oxidative stress induced in the placenta as a result.

UI MeSH Term Description Entries
D010927 Placental Insufficiency Failure of the PLACENTA to deliver an adequate supply of nutrients and OXYGEN to the FETUS. Insufficiency, Placental
D011225 Pre-Eclampsia A complication of PREGNANCY, characterized by a complex of symptoms including maternal HYPERTENSION and PROTEINURIA with or without pathological EDEMA. Symptoms may range between mild and severe. Pre-eclampsia usually occurs after the 20th week of gestation, but may develop before this time in the presence of trophoblastic disease. Toxemias, Pregnancy,EPH Complex,EPH Gestosis,EPH Toxemias,Edema-Proteinuria-Hypertension Gestosis,Gestosis, EPH,Hypertension-Edema-Proteinuria Gestosis,Preeclampsia,Preeclampsia Eclampsia 1,Pregnancy Toxemias,Proteinuria-Edema-Hypertension Gestosis,Toxemia Of Pregnancy,1, Preeclampsia Eclampsia,1s, Preeclampsia Eclampsia,EPH Toxemia,Eclampsia 1, Preeclampsia,Eclampsia 1s, Preeclampsia,Edema Proteinuria Hypertension Gestosis,Gestosis, Edema-Proteinuria-Hypertension,Gestosis, Hypertension-Edema-Proteinuria,Gestosis, Proteinuria-Edema-Hypertension,Hypertension Edema Proteinuria Gestosis,Of Pregnancies, Toxemia,Of Pregnancy, Toxemia,Pre Eclampsia,Preeclampsia Eclampsia 1s,Pregnancies, Toxemia Of,Pregnancy Toxemia,Pregnancy, Toxemia Of,Proteinuria Edema Hypertension Gestosis,Toxemia Of Pregnancies,Toxemia, EPH,Toxemia, Pregnancy,Toxemias, EPH
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005260 Female Females
D005317 Fetal Growth Retardation Failure of a FETUS to attain expected GROWTH. Growth Retardation, Intrauterine,Intrauterine Growth Retardation,Fetal Growth Restriction,Intrauterine Growth Restriction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014599 Uterus The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES. Fundus Uteri,Uteri,Uterine Cornua,Uterine Fundus,Uterus Cornua,Womb,Cornua, Uterine,Fundus Uterus,Fundus, Uterine,Uteri, Fundus,Wombs
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular

Related Publications

G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
October 2017, Journal of perinatal medicine,
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
April 2012, The journal of obstetrics and gynaecology research,
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
October 2016, Nutrition research (New York, N.Y.),
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
July 2012, Prenatal diagnosis,
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
January 2010, Prenatal diagnosis,
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
February 2014, American journal of physiology. Endocrinology and metabolism,
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
October 2023, Sheng li xue bao : [Acta physiologica Sinica],
G J Burton, and H-W Yung, and T Cindrova-Davies, and D S Charnock-Jones
January 2018, PloS one,
Copied contents to your clipboard!