The c-Cbl proto-oncoprotein downregulates EBV LMP2A signaling. 2009

Masato Ikeda, and Richard Longnecker
Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.

Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B-cell receptor (BCR) altering normal B cell development. As c-Cbl ubiquitin ligase (E3) is a critical negative regulator in the BCR signal pathway, the role of c-Cbl in the function and formation of the LMP2A signalosome was examined. c-Cbl promoted LMP2A degradation through ubiquitination, specifically degraded the Syk protein tyrosine kinase in the presence of LMP2A, and inhibited LMP2A induction of the EBV lytic cycle. Our earlier studies indicated that LMP2A-dependent Lyn degradation was mediated by Nedd4-family E3s in LMP2A expressing cells. Combine with these new findings, we propose a model in which c-Cbl and Nedd4-family E3s cooperate to degrade target proteins at discrete steps in the function of the LMP2A signalosome.

UI MeSH Term Description Entries
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072377 Syk Kinase An SH2 domain-containing non-receptor tyrosine kinase that regulates signal transduction downstream of a variety of receptors including B-CELL ANTIGEN RECEPTORS. It functions in both INNATE IMMUNITY and ADAPTIVE IMMUNITY and also mediates signaling in CELL ADHESION; OSTEOGENESIS; PLATELET ACTIVATION; and vascular development. SYK Tyrosine Kinase,Spleen Tyrosine Kinase,Kinase, SYK Tyrosine,Kinase, Spleen Tyrosine,Kinase, Syk,Tyrosine Kinase, SYK,Tyrosine Kinase, Spleen
D000075702 Nedd4 Ubiquitin Protein Ligases E3 ubiquitin ligases that consist of four WW DOMAINS. They accept UBIQUITIN from E2 UBIQUITIN-CONJUGATING ENZYME as a thioester via their C-terminal HECT domains and transfer it specifically to the 63rd LYSINE residue (Lys-63) of target proteins. NEDD4 targets include many proteins and receptors with important functions for cell growth and homeostasis such as VEGFR-2; FGFR1 TYROSINE KINASE; and ERBB-4 RECEPTOR. They play a critical role in the internalization of these receptors, their degradation by LYSOSOMES, and also function as part of the ESCRT complex in VIRUS RELEASE. Nedd4 Proteins,Neuronal Precursor Cell-Expressed Developmentally Down-Regulated 4 Ligase,Neuronal Precursor Cell Expressed Developmentally Down Regulated 4 Ligase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins

Related Publications

Masato Ikeda, and Richard Longnecker
April 1998, The international journal of biochemistry & cell biology,
Masato Ikeda, and Richard Longnecker
July 1997, Journal of immunology (Baltimore, Md. : 1950),
Masato Ikeda, and Richard Longnecker
November 2005, The Journal of cell biology,
Masato Ikeda, and Richard Longnecker
February 2003, Journal of cell science,
Masato Ikeda, and Richard Longnecker
October 2003, Oncogene,
Masato Ikeda, and Richard Longnecker
January 1994, Advances in experimental medicine and biology,
Masato Ikeda, and Richard Longnecker
June 2007, Annals of the New York Academy of Sciences,
Masato Ikeda, and Richard Longnecker
February 1997, The Journal of biological chemistry,
Masato Ikeda, and Richard Longnecker
January 1991, Oncogene,
Copied contents to your clipboard!