The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid. 1991

M Sugumaran, and H Dali, and V Semensi
Department of Biology, University of Massachusetts, Boston 02125.

Mushroom tyrosinase, which is known to catalyse the conversion of o-diphenols into o-benzoquinones, has been shown to catalyse the oxidative decarboxylation of 3,4-dihydroxymandelic acid [Sugumaran (1986) Biochemistry 25, 4489-4492]. To account for this unusual reaction, a quinone methide intermediate has been proposed. Since all attempts to trap this intermediate ended in vain, mechanistic studies were designed to support the formation of this transient product. Replacement of the alpha-proton in 3,4-dihydroxymandelic acid with a methyl group generates alpha-(3,4-dihydroxyphenyl)-lactic acid, the enzymic oxidation of which should produce 3,4-dihydroxyacetophenone as the end product if the oxidative decarboxylation proceeds through the quinone methide intermediate. Accordingly, chemically synthesized alpha-(3,4-dihydroxyphenyl)-lactic acid on enzymic oxidation produced 3,4-dihydroxyacetophenone as the major isolatable product. Non-steady-state kinetic analysis of the enzyme reaction attested to the transient formation of the conventional quinone product. Thus the enzymic oxidation of alpha-(3,4-dihydroxyphenyl)-lactic acid seems to generate the conventional quinone, which, owing to its instability, is rapidly decarboxylated to yield the transient quinone methide. The coupled dieneonephenol re-arrangement and ketol-enol tautomerism transforms the quinone methide into 3,4-dihydroxyacetophenone.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D001487 Basidiomycota A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi. Basidiomycetes,Basidiomycete,Basidiomycotas
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014442 Monophenol Monooxygenase An enzyme of the oxidoreductase class that catalyzes the reaction between L-tyrosine, L-dopa, and oxygen to yield L-dopa, dopaquinone, and water. It is a copper protein that acts also on catechols, catalyzing some of the same reactions as CATECHOL OXIDASE. EC 1.14.18.1. Dopa Oxidase,Phenoloxidase,Tyrosinase,Cresolase,Phenol Oxidase,Phenoloxidase A,Phenoloxidase B,Monooxygenase, Monophenol,Oxidase, Dopa,Oxidase, Phenol

Related Publications

M Sugumaran, and H Dali, and V Semensi
August 1986, Biochemistry,
M Sugumaran, and H Dali, and V Semensi
January 1978, Farmakologiia i toksikologiia,
M Sugumaran, and H Dali, and V Semensi
April 2014, Life sciences,
M Sugumaran, and H Dali, and V Semensi
June 1962, The Journal of biological chemistry,
M Sugumaran, and H Dali, and V Semensi
July 1958, Biochimica et biophysica acta,
M Sugumaran, and H Dali, and V Semensi
January 2012, The Journal of international medical research,
M Sugumaran, and H Dali, and V Semensi
May 2013, Biotechnology letters,
M Sugumaran, and H Dali, and V Semensi
January 2012, Clinical hemorheology and microcirculation,
M Sugumaran, and H Dali, and V Semensi
June 1946, Journal of the American Pharmaceutical Association. American Pharmaceutical Association,
Copied contents to your clipboard!