Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. 2009

Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
ImClone Systems Incorporated, New York, NY, USA.

Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068818 Cetuximab A chimeric monoclonal antibody that functions as an ANTINEOPLASTIC AGENT through its binding to the EPIDERMAL GROWTH FACTOR RECEPTOR, where it prevents the binding and signaling action of cell growth and survival factors. C225,Erbitux,IMC C225,IMC-C225,MAb C225
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft

Related Publications

Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
September 2007, Cancer research,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
February 2005, Drugs of today (Barcelona, Spain : 1998),
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
June 2008, The British journal of dermatology,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
March 2002, The British journal of surgery,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
June 2005, Clinical therapeutics,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
August 2013, Cancer chemotherapy and pharmacology,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
January 2005, Neurosurgery,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
December 2016, Immunology letters,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
December 2006, The Journal of biological chemistry,
Dipa Patel, and Rajiv Bassi, and Andrea Hooper, and Marie Prewett, and Daniel J Hicklin, and Xiaoqiang Kang
November 2012, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!