Lactose hydrolysis by beta-galactosidase covalently immobilized to thermally stable biopolymers. 2009

Magdy M M Elnashar, and Mohamed A Yassin
Polymers Department, Centre of Scientific Excellence-Advanced Materials & Nanotechnology Laboratory, National Research Center, El-Behooth St. Dokki, Cairo, Egypt. magmel@gmail.com

Lactose has been hydrolyzed using covalently immobilized beta-galactosidase on thermally stable carrageenan coated with chitosan (hydrogel). The hydrogel's mode of interaction was proven by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and Schiff's base formation. The DSC thermogram proved the formation of a strong polyelectrolyte complex between carrageenan and chitosan followed by glutaraldehyde as they formed one single peak. The modification of carrageenan improved the gel's thermal stability in solutions from 35 degrees C to 95 degrees C. The hydrogel has been proven to be efficient for beta-galactosidase immobilization where 11 U/g wet gel was immobilized with 50% enzyme loading capacity. Activity and stability of free and immobilized beta-galactosidase towards pH and temperature showed marked shifts in their optimum pH from 4.5-5 to 5-5.5 and temperature from 50 degrees C to 45-55 degrees C after immobilization, which reveals higher catalytic activity and reasonable stability at wider pHs and temperatures. The apparent K(m) of the immobilized enzyme increased from 13.2 to 125 mM, whereas the V(max) increased from 3.2 to 6.6 micromol/min compared to the free enzyme, respectively. The free and immobilized enzymes showed lactose conversion of 87% and 70% at 7 h, respectively. The operational stability showed 97% retention of the enzyme activity after 15 uses, which demonstrates that the covalently immobilized enzyme is unlikely to leach. The new carrier could be suitable for immobilization of other industrial enzymes.

UI MeSH Term Description Entries
D007785 Lactose A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Anhydrous Lactose,Lactose, Anhydrous
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004800 Enzymes, Immobilized Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields. Immobilized Enzymes,Enzyme, Immobilized,Immobilized Enzyme
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D001704 Biopolymers Polymers synthesized by living organisms. They play a role in the formation of macromolecular structures and are synthesized via the covalent linkage of biological molecules, especially AMINO ACIDS; NUCLEOTIDES; and CARBOHYDRATES. Bioplastics,Bioplastic,Biopolymer
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

Magdy M M Elnashar, and Mohamed A Yassin
January 1976, Prikladnaia biokhimiia i mikrobiologiia,
Magdy M M Elnashar, and Mohamed A Yassin
August 1989, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
January 1975, Prikladnaia biokhimiia i mikrobiologiia,
Magdy M M Elnashar, and Mohamed A Yassin
February 1992, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
August 1984, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
February 1989, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
January 2003, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
January 2003, Biotechnology and bioengineering,
Magdy M M Elnashar, and Mohamed A Yassin
April 1989, Biotechnology and bioengineering,
Copied contents to your clipboard!