Proteinase-activated receptor-1 mediates allogeneic CD8(+) T cell-induced apoptosis of vascular endothelial cells. 2009

Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
Institute of Hematology, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. liquan215499@163.com

Vascular endothelial-cells injury plays a pivotal role in the pathogenesis of graft-versus-host disease (GVHD) and transplant-associated endothelial injury syndrome. Vascular endothelial cells are an exposed target tissue for immune-mediated injury during GVHD. Early endothelial injury syndromes share common features with acute GVHD. Chronic GVHD leads to a rarefaction of microvessels caused by the infiltration of alloreactive cytotoxic T lymphocytes. In this context, allogeneic reactive cytotoxic T cell may contribute to apoptosis of vascular endothelial cells. The involvement of proteinase-activated receptor (PAR-1) in regulation of apoptosis has been recently recognized in many cell types. We hypothesized that apoptosis of vascular endothelial cells induced by allogeneic cytotoxic T cell are mediated via the PAR-1. Allogeneic CD8(+) T cell, PAR-1 agonist peptide (SFLLRN) induced apoptosis of human umbilical vein endothelial cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs) as assessed by AnnexinV-FITC labeling. To ascertain the mechanism of endothelial apoptosis, we determined that allogeneic CD8(+) T cell, SFLLRN enhanced cleavage of caspase-3 and led to p38MAPK activation as assessed by Western blot. The effects of allogeneic CD8(+) T cell and SFLLRN on apoptosis of vascular endothelial cells were largely prevented by a cleavage-blocking anti-human PAR-1-antibody (ATAP2) and a specific inhibitor of p38MAPK. In concert, these observations provide strong evidence that allogeneic CD8(+) T cell induces apoptosis of human vascular endothelial cells through PAR-1-dependent modulation of intrinsic apoptotic pathway via alterations of p38MAPK and caspase-3.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014471 Umbilical Veins Venous vessels in the umbilical cord. They carry oxygenated, nutrient-rich blood from the mother to the FETUS via the PLACENTA. In humans, there is normally one umbilical vein. Umbilical Vein,Vein, Umbilical,Veins, Umbilical
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D044463 Receptor, PAR-1 A thrombin receptor subtype that couples to HETEROTRIMERIC GTP-BINDING PROTEINS resulting in the activation of a variety of signaling mechanisms including decreased intracellular CYCLIC AMP, increased TYPE C PHOSPHOLIPASES and increased PHOSPHOLIPASE A2. PAR-1 Receptor,Protease-Activated Receptor 1,PAR1 Receptor,Proteinase-Activated Receptor 1,PAR 1 Receptor,Protease Activated Receptor 1,Proteinase Activated Receptor 1,Receptor, PAR 1,Receptor, PAR1

Related Publications

Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
June 2009, Zhonghua yi xue za zhi,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
September 2005, American journal of respiratory cell and molecular biology,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
April 1996, The Journal of clinical investigation,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
November 2004, Apoptosis : an international journal on programmed cell death,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
July 2002, Cytokine,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
October 2009, Journal of cellular biochemistry,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
January 2017, Journal of immunology research,
Li Quan, and Zhang Jian, and Zou Ping, and Li Weiming
December 2006, Oncogene,
Copied contents to your clipboard!