Inhibition of glucuronidation of benzo(a)pyrene phenols by long-chain fatty acids. 1991

Z Zhong, and F C Kauffman, and R G Thurman
Department of Pharmacology, University of North Carolina, Chapel Hill 27599.

Long-chain fatty acids inhibit glucuronidation of benzo(a)pyrene phenols in perfused liver; therefore, this study was designed to investigate interactions of fatty acids with beta-glucuronidase, glucuronosyl transferase, and energy supply. In beta-glucuronidase-deficient C3H/He mice, infusion of oleate (250 microM) increased the release of free benzo(a)pyrene phenols from 14 to 33 nmol/g/h and decreased release of glucuronides into the perfusate from 25 to 17 nmol/g/h. Rates of accumulation of glucuronides in the liver were also diminished from 11 to 4 nmol/g/h after infusion of oleate (250 microM). Fatty acids did not affect the release of benzo(a)pyrene metabolites into bile, and the ratio of free phenol to glucuronide production was increased from 0.57 to 1.30. A similar trend was observed in livers from DBA/2 mice that have beta-glucuronidase. Rates of hydrolysis of benzo(a)pyrene-O-glucuronide were not altered in isolated microsomes by addition of oleoyl coenzyme A (CoA) or octanoyl CoA (10- approximately 100 microM). Thus, we conclude that fatty acids do not alter glucuronidation by acting on beta-glucuronidase. The concentration of cofactors (UDP-glucuronic acid, UDP-glucose, and adenine nucleotides) involved in hepatic conjugation was not altered by infusion of concentrations of oleate (300 microM) that inhibited glucuronidation in perfused livers. When oleate concentrations were increased to 600 microM, UDP-glucuronic acid and UDP-glucose decreased 44 and 49%, respectively, and the ATP:ADP ratio declined concomitantly. Oleoyl CoA inhibited UDP-glucuronosyl transferase noncompetitively (half-maximal inhibition, 10 microM) in microsomes with 3-hydroxy-benzo(a)pyrene or p-nitrophenol as substrate. In contrast, octanoyl CoA was a very poor inhibitor of transferase activity. Inhibition of the transferase by oleoyl CoA was increased markedly by treatment with detergents (Triton X-100), i.e., half-inhibition of glucuronosyl transferase was obtained with about 2 microM oleoyl CoA. Inhibition of UDP-glucuronosyl transferase by oleoyl CoA was also increased in a dose-dependent manner by albumin, possibly due to increasing access of the CoA derivative to the enzyme. Collectively, these data indicate that fatty acids diminish glucuronidation via the formation of acyl CoA compounds that inhibit UDP-glucuronosyl transferase noncompetitively.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase

Related Publications

Z Zhong, and F C Kauffman, and R G Thurman
May 1984, Archives of biochemistry and biophysics,
Z Zhong, and F C Kauffman, and R G Thurman
October 1979, Cancer research,
Z Zhong, and F C Kauffman, and R G Thurman
May 1987, Journal of dairy science,
Z Zhong, and F C Kauffman, and R G Thurman
May 1978, Biochemical and biophysical research communications,
Z Zhong, and F C Kauffman, and R G Thurman
January 1985, Chemico-biological interactions,
Z Zhong, and F C Kauffman, and R G Thurman
July 1978, Chemico-biological interactions,
Z Zhong, and F C Kauffman, and R G Thurman
April 1984, Virology,
Z Zhong, and F C Kauffman, and R G Thurman
August 1978, Naunyn-Schmiedeberg's archives of pharmacology,
Z Zhong, and F C Kauffman, and R G Thurman
August 1982, The American journal of physiology,
Copied contents to your clipboard!