Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. 1991

N Venkatesh, and S T Lamp, and J N Weiss
Department of Medicine, UCLA School of Medicine.

Sulfonylurea derivatives glibenclamide and tolbutamide are selective blockers of ATP-sensitive K+ (KATP) channels. However, their ability to prevent cellular K+ loss and shortening of action potential duration during ischemia or hypoxia in the intact heart is modest compared with their efficacy at blocking KATP channels in excised membrane patches. In the isolated arterially perfused rabbit interventricular septum, the increase in unidirectional K+ efflux and shortening of action potential duration during substrate-free hypoxia were effectively blocked by glibenclamide, but only by very high concentrations (100 microM); during hypoxia with glucose present, glibenclamide was only partially effective at reducing K+ loss. During total global ischemia (10 minutes), up to 100 microM glibenclamide or 1 mM tolbutamide attenuated shortening of action potential duration but only reduced [K+]0 accumulation by a maximum of 32 +/- 6%. In isolated patch-clamped guinea pig ventricular myocytes in which the whole-cell ATP-sensitive K+ current was activated by exposure to the metabolic inhibitors, glibenclamide (up to 100 microM) and tolbutamide (10 mM) were only partially effective at blocking the whole-cell ATP-sensitive K+ current (maximum block, 51 +/- 10% and 50 +/- 9%, respectively), especially when ADP was included in the patch electrode solution. In inside-out membrane patches excised from these myocytes, glibenclamide blocked unitary currents through KATP channels with a Kd of 0.5 microM and a Hill coefficient of 0.5 in the absence of ADP at the cytosolic membrane surface, but block was incomplete when 100 microM ADP (+2 mM free Mg2+) was present. ADP had a similar effect on block of KATP channels by tolbutamide. These findings suggest that free cytosolic [ADP], which rises rapidly to the 100 microM range during early myocardial ischemia and hypoxia, may account for the limited efficacy of sulfonylureas at blocking ischemic and hypoxic cellular K+ loss under these conditions.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D005260 Female Females
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

N Venkatesh, and S T Lamp, and J N Weiss
January 1989, Pflugers Archiv : European journal of physiology,
N Venkatesh, and S T Lamp, and J N Weiss
April 1989, The American journal of physiology,
N Venkatesh, and S T Lamp, and J N Weiss
January 1994, Biology of the neonate,
N Venkatesh, and S T Lamp, and J N Weiss
February 1990, Science (New York, N.Y.),
N Venkatesh, and S T Lamp, and J N Weiss
May 1994, Circulation research,
N Venkatesh, and S T Lamp, and J N Weiss
August 1995, Diabetes research and clinical practice,
N Venkatesh, and S T Lamp, and J N Weiss
February 1998, Circulation research,
N Venkatesh, and S T Lamp, and J N Weiss
August 1993, Cardiovascular drugs and therapy,
N Venkatesh, and S T Lamp, and J N Weiss
August 1993, Cardiovascular drugs and therapy,
Copied contents to your clipboard!