Regulation of rat hypothalamic preprogrowth hormone-releasing factor messenger ribonucleic acid by dietary protein. 1991

J F Bruno, and J F Song, and M Berelowitz
Department of Medicine, State University of New York, Stony Brook 11794.

To further evaluate nutrient regulation of GRF synthesis, we measured hypothalamic preproGRF messenger (m) RNA in food-deprived rats refed diets varying in nutrient composition by nuclease protection analysis. Adult male Sprague-Dawley rats were allowed free access to food (Fed), food deprived for 72 h (72-h FD), or 72 h FD then refed for 72 h with either a normal (NF) diet or isocaloric diets containing no protein (PF), carbohydrate (CF), or fat (FF). Seventy-two-hour FD rats displayed the expected 80% reduction in hypothalamic preproGRF mRNA. Upon refeeding, levels were normalized in rats refed NF, CF, or FF diets. In contrast, preproGRF mRNA in rats refed a PF diet was similar to that in 72-h FD rats. Rats refed a PF diet failed to gain weight and consumed less food than animals refed NF, CF, or FF diets. However, the lack of the GRF response to the PF diet was due to protein deprivation rather than caloric restriction, since hypothalamic preproGRF mRNA returned to 66% of Fed values in rats refed an equivalent amount (grams per day) of a NF diet. In 72-h FD rats refed isocaloric diets containing 4%, 8%, or 12% protein, preproGRF mRNA was restored to Fed values in a protein concentration-dependent manner being completely restored by the 12% diet. A lack of dietary protein was sufficient to regulate hypothalamic preproGRF mRNA since feeding rats a PF diet without prior food deprivation resulted in 70% reduction in preproGRF mRNA, whereas CF and FF diets were without effect. These data indicate that decreased hypothalamic preproGRF mRNA expression in 72-h FD rats occurs as a result of dietary protein deprivation.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D011498 Protein Precursors Precursors, Protein
D011502 Protein-Energy Malnutrition The lack of sufficient energy or protein to meet the body's metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor quality dietary protein, increased demands due to disease, or increased nutrient losses. Marasmus,Protein-Calorie Malnutrition,Malnutrition, Protein-Calorie,Malnutrition, Protein-Energy,Malnutritions, Protein-Energy,Protein Calorie Malnutrition,Protein Energy Malnutrition
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Copied contents to your clipboard!