Cytoplasmic and transmembrane domains of integrin beta 1 and beta 3 subunits are functionally interchangeable. 1991

J Solowska, and J M Edelman, and S M Albelda, and C A Buck
Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104.

Integrin beta subunits combine with specific sets of alpha subunits to form functional adhesion receptors. The structure and binding properties of integrins suggest the presence of domains controlling at least three major functions: subunit association, ligand binding, and cytoskeletal interactions. To more carefully define structure/function relationships, a cDNA construct consisting of the extracellular domain of the avian beta 1 subunit and the cytoplasmic and transmembrane domains of the human beta 3 subunit was prepared and expressed in murine 3T3 cells. The resulting chimeric beta 1/3 subunit formed heterodimers with alpha subunits from the beta 1 subfamily, could not interact with alpha IIb from the beta 3 subfamily, was targeted to focal contacts, and formed functional complexes within the focal contacts. A second cDNA construct was prepared that coded for an avian beta 1 subunit without a transmembrane or cytoplasmic domain. This subunit was not found in association with an accompanying alpha subunit, nor was it found expressed on the cell surface. Instead, it accumulated in vesicles within the cytoplasm and was eventually shed from the cell. The results from studies of the behavior of these two cDNA constructs demonstrate that the transmembrane and cytoplasmic domains play no role in alpha subunit selection, that the cytoplasmic domain of beta 3 is capable of functioning in the context of alpha subunits with which it is not normally paired, and that both integrin subunits must be membrane associated for normal assembly and transport to cell surface adhesive structures.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J Solowska, and J M Edelman, and S M Albelda, and C A Buck
August 1998, Frontiers in bioscience : a journal and virtual library,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
December 1999, The Journal of biological chemistry,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
October 1999, FEBS letters,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
August 1993, The Journal of experimental medicine,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
October 2001, Proceedings of the National Academy of Sciences of the United States of America,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
August 2008, Molecular membrane biology,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
January 2004, Archivum immunologiae et therapiae experimentalis,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
November 1989, The Journal of cell biology,
J Solowska, and J M Edelman, and S M Albelda, and C A Buck
October 1995, International journal of cancer,
Copied contents to your clipboard!