Hepatitis delta virus inhibits alpha interferon signaling. 2009

Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
Division of Clinical Pathology, University Hospital, Geneva, Switzerland.

Hepatitis delta virus (HDV) can cause severe acute and chronic liver disease in patients infected with hepatitis B virus. Interferon-alpha (IFN-alpha) is the only treatment reported to be effective in chronic hepatitis delta, albeit in a minority of patients. The molecular mechanisms underlying resistance to therapy are unclear. IFN-alpha-induced activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling cascade is essential for the induction of an antiviral state. Interference of HDV with the JAK-STAT pathway could be responsible for the IFN-alpha resistance in chronic hepatitis delta patients. We analyzed IFN-alpha-induced signal transduction through the JAK-STAT pathway in human hepatoma cells transfected with the complete HDV genome. The expression of IFN-alpha-stimulated genes was investigated with reverse transcription real-time polymerase chain reaction (PCR). STATs and JAKs activations were examined by immunofluorescence and immunoblot. The IFN-alpha-stimulated genes coding for the antiviral proteins myxovirus resistance A, double-stranded RNA (dsRNA)-activated protein kinase and 2',5'-oligoadenylate synthetase were down-regulated in HDV-transfected hepatoma cells in response to IFN-alpha treatment. HDV severely impaired the phosphorylation of both STAT1 and STAT2, thus preventing their accumulation in the nucleus. Furthermore, HDV blocked the IFN-alpha-stimulated tyrosine phosphorylation of IFN receptor-associated JAK kinase Tyk2, without affecting either the tyrosine phosphorylation of Jak1 or the expression of type I IFN receptor subunits. CONCLUSIONS IFN-alpha-induced intracellular signaling is impaired in HDV-transfected human hepatoma cells. HDV subverts the effect of IFN-alpha by blocking Tyk2 activation, thereby resulting in selective impairment of activation and translocation to the nucleus of STAT1 and STAT2. Interference of HDV with IFN-alpha signaling could represent an important mechanism of viral persistence and treatment resistance.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D003698 Hepatitis Delta Virus A defective virus, containing particles of RNA nucleoprotein in virion-like form, present in patients with acute hepatitis B and chronic hepatitis. It requires the presence of a hepadnavirus for full replication. This is the lone species in the genus Deltavirus. Delta Agent,Delta Virus,Deltavirus,Hepatitis D Virus,Delta Agents,Delta Virus, Hepatitis,Delta Viruses,Delta Viruses, Hepatitis,Deltaviruses,Hepatitis D Viruses,Hepatitis Delta Viruses
D006509 Hepatitis B INFLAMMATION of the LIVER in humans caused by a member of the ORTHOHEPADNAVIRUS genus, HEPATITIS B VIRUS. It is primarily transmitted by parenteral exposure, such as transfusion of contaminated blood or blood products, but can also be transmitted via sexual or intimate personal contact. Hepatitis B Virus Infection
D006515 Hepatitis B virus The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum. Dane Particle,Hepatitis Virus, Homologous Serum,B virus, Hepatitis,Hepatitis B viruses,Particle, Dane,viruses, Hepatitis B
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
July 2019, Journal of virology,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
January 2007, Journal of virology,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
May 2005, Journal of virology,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
May 2003, Gastroenterology,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
January 1987, Progress in clinical and biological research,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
January 1987, Progress in clinical and biological research,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
January 1993, Progress in clinical and biological research,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
November 1989, The Quarterly journal of medicine,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
February 1995, Gastroenterologie clinique et biologique,
Paolo Pugnale, and Valerio Pazienza, and Kévin Guilloux, and Francesco Negro
March 2014, Hepatitis monthly,
Copied contents to your clipboard!