Quantification of C60 fullerene concentrations in water. 2008

Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona 85287-1604, USA.

The growing usage of nanomaterials is causing emerging concern regarding their environmental behavior in aquatic environments. A major need is the capability to detect and quantify nanomaterials in complex water matrices. Carbon60 fullerene is of special interest because of the widespread application of nanocarbon technology. The present study focuses on how to separate and concentrate fullerenes from water containing salts and organic matter and then quantify their concentrations using liquid chromatography coupled with mass spectrometry (LC/MS). The stable aqueous C60 aggregates (nC60) prepared in the present study were approximately 60 to 70 nm in diameter and had an ultraviolet (UV) extinction coefficient of 0.0263 L/mg-cm at 347 nm, which equated to a UV detection limit of 0.4 mg/L based upon an absorbance of 0.01 cm(-1). Ultraviolet analysis is not applicable to use in waters containing salts or organics (e.g., tap water) because of their interferences and potential to aggregate nC60. The LS/MS analysis detected C60 as single fullerene rather than aggregates. Three techniques were developed to separate and concentrate nC60 from ultrapure and tap water into toluene to facilitate LC/MS determination: Evaporation of sample to dryness; extraction using 20% NaCl into toluene; and solid-phase extraction. The first two methods had limitations for use in complex water matrices, but aqueous nC60 concentration as low as 300 ng/L in water were quantified using solid-phase extraction (SPE) separation method. This is the first publication on the application of extraction methods for nC60 from ultrapure and tap waters and determination of detection limits by LC/MS.

UI MeSH Term Description Entries
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012492 Salts Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed) Salt
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D014881 Water Supply Means or process of supplying water (as for a community) usually including reservoirs, tunnels, and pipelines and often the watershed from which the water is ultimately drawn. (Webster, 3d ed) Supplies, Water,Supply, Water,Water Supplies

Related Publications

Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
December 2011, Macromolecular rapid communications,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
February 2019, Physical chemistry chemical physics : PCCP,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
February 2018, AMB Express,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
August 2018, Data in brief,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
March 2004, Ultrasonics,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
January 2018, Physical chemistry chemical physics : PCCP,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
August 2017, Nanotechnology,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
May 2017, ACS omega,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
January 2008, Molecular pharmaceutics,
Zhuo Chen, and Paul Westerhoff, and Pierre Herckes
January 2019, BioImpacts : BI,
Copied contents to your clipboard!