Characterization of a soluble ferric reductase from Neisseria gonorrhoeae. 1991

A E Le Faou, and S A Morse
Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control, Atlanta, Georgia 30333.

An NADH-dependent ferric reductase was identified in extracts of Neisseria gonorrhoeae. Enzyme activity was measured in an assay using ferrozine as the ferrous iron acceptor. Ferric reductase activity was enhanced by Mg2+ and flavine nucleotides. The enzyme reduced both citrate- and diphosphate-bound ferric iron as well as ferric hydroxide (Imferon). However, no activity was observed with either 30%-iron-saturated transferrin or with the gonococcal iron-binding protein, Fbp. The ferric reductase was found primarily within the cytoplasmic cell fraction. The soluble ferric reductase was purified 110-fold by ammonium sulfate precipitation, gel and anion-exchange chromatography. Results obtained following gel chromatography and SDS/polyacrylamide gel electrophoresis suggested that the enzyme had a molecular mass of about 25 kDa.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D038181 FMN Reductase An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29. Flavin Mononucleotide Reductase,NAD(P)H-Flavin Oxidoreductase,FMN Oxidoreductase,NAD(P)H Dehydrogenase (FMN),NAD(P)H-FMN Oxidoreductase,NADH-FMN Oxidoreductase,NADH-Flavin Oxidoreductase,NADPH-Flavin Reductase,Mononucleotide Reductase, Flavin,NADH FMN Oxidoreductase,NADPH Flavin Reductase,Oxidoreductase, FMN,Oxidoreductase, NADH-FMN,Oxidoreductase, NADH-Flavin,Reductase, FMN,Reductase, Flavin Mononucleotide,Reductase, NADPH-Flavin

Related Publications

A E Le Faou, and S A Morse
October 1984, The Journal of biological chemistry,
A E Le Faou, and S A Morse
May 1999, Journal of bacteriology,
A E Le Faou, and S A Morse
March 2001, European journal of biochemistry,
A E Le Faou, and S A Morse
July 1984, Biochemical pharmacology,
A E Le Faou, and S A Morse
October 1974, Infection and immunity,
A E Le Faou, and S A Morse
March 1988, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
A E Le Faou, and S A Morse
January 1984, Molecular and cellular biochemistry,
A E Le Faou, and S A Morse
June 1997, FEMS microbiology letters,
Copied contents to your clipboard!