Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. 1991

H Nakaya, and Y Takeda, and N Tohse, and M Kanno
Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan.

1. In order to determine whether activation of adenosine triphosphate (ATP)-sensitive K+ channels exclusively explains the hypoxia- and ischaemia-induced action potential shortening, effects of tolbutamide and glibenclamide on changes in action potential duration (APD) during hypoxia, metabolic blockade or experimental ischaemia were examined in guinea-pig and canine isolated myocardium by standard microelectrode techniques. 2. With use of patch clamp techniques, activity of ATP-sensitive K+ channels was recorded from open cell-attached patches of guinea-pig isolated ventricular myocytes. The probability of opening of the K+ channels was decreased by 2 mM tolbutamide and 20 microM glibenclamide to almost the same extent, whereas it was increased by 100 microM pinacidil. 3. In guinea-pig papillary muscles a marked shortening of the action potential produced by 100 microM pinacidil was completely antagonized by 2 mM tolbutamide or 20 microM glibenclamide. 4. In guinea-pig papillary muscles exposed to hypoxic, glucose-free solution or dinitrophenol (10 microM)-containing, glucose-free solution, APD declined gradually and twitch tension decreased. Pretreatment with glibenclamide partially but significantly inhibited the action potential shortening, whereas tolbutamide failed to improve it during hypoxia or metabolic blockade. 5. When in canine isolated myocardium, experimental ischaemia was produced by the cessation of coronary perfusion, APD was gradually shortened. The action potential shortening was partially but not completely inhibited by pretreatment with 20 microM glibenclamide. 6. These results suggest that changes in membrane current(s) other than the outward current through ATP-sensitive K+ channels also contribute to the action potential shortening in hypoxic or ischaemic myocardium.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.

Related Publications

H Nakaya, and Y Takeda, and N Tohse, and M Kanno
August 1992, British journal of pharmacology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
May 2001, European journal of pharmacology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
January 2011, Journal of pharmacological sciences,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
January 2011, Journal of pharmacological sciences,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
June 1994, Cardiovascular research,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
January 1999, Methods and findings in experimental and clinical pharmacology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
March 1995, Journal of cardiovascular pharmacology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
February 1992, The Journal of physiology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
December 2001, Anesthesiology,
H Nakaya, and Y Takeda, and N Tohse, and M Kanno
August 2001, Endocrine research,
Copied contents to your clipboard!