Molecular cloning, nucleotide sequence and expression of the tufB gene encoding elongation factor Tu from Thermus thermophilus HB8. 1991

M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
Faculty of Pharmaceutical Sciences, Osaka University, Japan.

The tufB gene encoding elongation factor Tu (EF-Tu) of Thermus thermophilus HB8 was cloned and expressed. Compared with the known tufA gene of T. thermophilus, nucleotide differences were found at 10 positions out of 1221 nucleotides, and amino acid substitutions were found at 4 positions out of 406 amino acids. The tufB product was 70.9% homologous to the corresponding sequence of the tufB product of E. coli. The G+C content of the third base of the codon in the tufB gene was 84.8% and G was especially preferred in this position.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
December 1987, European journal of biochemistry,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
November 1987, Nucleic acids research,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
November 1989, Nucleic acids research,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
June 1982, European journal of biochemistry,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
September 1990, Biokhimiia (Moscow, Russia),
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
November 1995, European journal of biochemistry,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
September 1988, Biochimica et biophysica acta,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
September 1988, Nucleic acids research,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
December 1993, Gene,
M Satoh, and T Tanaka, and A Kushiro, and T Hakoshima, and K Tomita
August 1988, Nucleic acids research,
Copied contents to your clipboard!