Transcriptional regulation of HMG-CoA synthase and HMG-CoA reductase genes by human ACBP. 2008

Christina Vock, and Frank Döring, and Inke Nitz
Molecular Nutrition, Christian-Albrechts-University of Kiel, Kiel, Germany.

The acyl-CoA binding protein (ACBP) is an ubiquitary expressed multi-functional protein which regulates basic cellular functions such as fatty acid and steroid metabolism. Since ACBP is described to interact with the transcription factor hepatocyte nuclear factor 4 alpha (HNF-4alpha), we investigated the role of human ACBP on transcriptional regulation of the putative HNF-4alpha target gene HMG-CoA synthase 1 (HMGCS1). As shown by promoter-reporter assays ACBP represses the HNF-4alpha-induced activity of a 617bp HMGCS1 promoter fragment by approximately 80% in HepG2 cells as well as in non-endodermal HeLa cells devoid of HNF-4alpha. Interestingly, reporter assays without co-transfection of HNF-4alpha revealed that ACBP reduces the activity of the HMGCS1 promoter by about 60 to 80% in both cell lines. Activities of 417bp and 317bp HMGCS1 promoter fragments were 2.5 to 4 fold decreased by ACBP. Concordantly, the levels of HMGCS1-mRNA and -protein were diminished to 60% and 70% in ACBP-expressing HeLa cells, respectively. Additionally, ACBP reduces the promoter activity and the mRNA levels of the cholesterogenic HMG-CoA reductase (HMGCR). In conclusion, we provide evidence that ACBP is a transcriptional regulator of the HMGCS1 and HMGCR genes encoding rate-limiting enzymes of cholesterol synthesis pathway.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006904 Hydroxymethylglutaryl-CoA Synthase An enzyme that catalyzes the synthesis of hydroxymethylglutaryl-CoA from acetyl-CoA and acetoacetyl-CoA. This is a key enzyme in steroid biosynthesis. This enzyme was formerly listed as EC 4.1.3.5. HMG CoA Synthase,3-hydroxy-3-methylglutaryl-coenzyme A synthase,HMG-CoA synthase,3 hydroxy 3 methylglutaryl coenzyme A synthase,A synthase, 3-hydroxy-3-methylglutaryl-coenzyme,CoA Synthase, HMG,Hydroxymethylglutaryl CoA Synthase,Synthase, HMG CoA,Synthase, Hydroxymethylglutaryl-CoA,synthase, 3-hydroxy-3-methylglutaryl-coenzyme A,synthase, HMG-CoA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D047369 Chromatin Immunoprecipitation A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing. Immunoprecipitation, Chromatin

Related Publications

Christina Vock, and Frank Döring, and Inke Nitz
January 2000, The Journal of investigative dermatology,
Christina Vock, and Frank Döring, and Inke Nitz
January 1976, Advances in lipid research,
Christina Vock, and Frank Döring, and Inke Nitz
June 2008, Journal of cellular biochemistry,
Christina Vock, and Frank Döring, and Inke Nitz
October 1998, Biochimie,
Christina Vock, and Frank Döring, and Inke Nitz
January 1972, Biochemical Society symposium,
Christina Vock, and Frank Döring, and Inke Nitz
December 2022, Cold Spring Harbor perspectives in biology,
Christina Vock, and Frank Döring, and Inke Nitz
March 1998, Circulation,
Christina Vock, and Frank Döring, and Inke Nitz
January 1982, Biophysical journal,
Christina Vock, and Frank Döring, and Inke Nitz
March 1997, Biochemical and biophysical research communications,
Christina Vock, and Frank Döring, and Inke Nitz
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!