Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. 2008

Ahmed Bettaieb, and Diana A Averill-Bates
Departement des sciences biologiques, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, QC H3C3P8, Canada.

Mild temperatures such as 40 degrees C are physiological and occur during fevers. This study determines whether mild thermotolerance induced at 40 degrees C can protect HeLa cells against activation of the death receptor pathway of apoptosis by lethal hyperthermia (42-45 degrees C). Protein expression of heat shock proteins (Hsps) 27, 32, 60, 72, 90, and 110 was increased in thermotolerant cells (3 h, 40 degrees C). Lethal hyperthermia (42-43 degrees C) caused cell death by apoptosis, but at 45 degrees C there was a switch to necrosis. Mild thermotolerance protected cells against heat-induced apoptosis (Annexin V labelling). Hyperthermia induced apoptosis through generation of reactive oxygen species (ROS) and death receptor signalling. The antioxidant polyethylene glycol-catalase abrogated increased expression of Fas death ligand and caspase-8 activation in response to lethal hyperthermia (42-43 degrees C). Mild thermotolerance attenuated the heat induction of ROS and FasL, which were initiating events in death receptor activation and signalling. Mild thermotolerance inhibited early events in hyperthermia-induced death receptor apoptosis such as Fas-associated death domain (FADD) translocation to membranes, caspase-8 activation, and tBid translocation to mitochondria. Downstream events in apoptosis such as caspase-3 activation, cleavage of PARP and ICAD, and chromatin condensation were also diminished in thermotolerant cells. It is important to improve knowledge about adaptive responses induced by exposure to mild stresses, such as fever temperatures, which can protect cells against subsequent exposure to lethal stress.

UI MeSH Term Description Entries
D005334 Fever An abnormal elevation of body temperature, usually as a result of a pathologic process. Pyrexia,Fevers,Pyrexias
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma
D053218 Receptors, Death Domain A family of cell surface receptors that signal via a conserved domain that extends into the cell CYTOPLASM. The conserved domain is referred to as a DEATH DOMAIN due to the fact that many of these receptors are involved in APOPTOSIS signaling pathways. Several DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS can bind to the death domains of the activated receptors and through a complex series of interactions activate apoptotic mediators such as CASPASES. Death Domain Receptors,Death Receptor,Death Receptors,Receptors, DR Family,Receptors, Death Domain Family,DR Family Receptors,Receptor, Death

Related Publications

Ahmed Bettaieb, and Diana A Averill-Bates
December 1980, European journal of cancer,
Ahmed Bettaieb, and Diana A Averill-Bates
November 1976, Radiology,
Ahmed Bettaieb, and Diana A Averill-Bates
January 1988, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
Ahmed Bettaieb, and Diana A Averill-Bates
April 2001, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!