Use of alpha-aminoadipate and lysine as sole nitrogen source by Schizosaccharomyces pombe and selected pathogenic fungi. 1991

Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
Department of Microbiology, Miami University, Oxford, Ohio 45056.

alpha-Aminodipate, an intermediate of the lysine biosynthetic pathway of fungi, or lysine when used as the sole nitrogen source in the medium was growth inhibitory and toxic to Saccharomyces cerevisiae. The fission yeast Schizosaccharomyces pombe and pathogenic fungi Candida albicans, Filobasidiella neoformans and Aspergillus fumigatus grew in the medium containing alpha-aminoadipate as the sole nitrogen source. C. albicans, A. fumigatus, and one of the strains of F. neoformans also grew in the medium containing lysine as the sole nitrogen source. When grown in the alpha-aminoadipate medium, only S. pombe accumulated a significant amount of alpha-ketoadipate in the culture supernatant. Also, 14C-alpha-aminoadipate was converted to 14C-alpha-ketoadipate in vivo. In the ammonium sulfate medium, S. pombe cells converted 14C-alpha-aminoadipate to lysine. The levels of glutamate-alpha-ketoadipate transaminase, an enzyme responsible for the conversion of alpha-aminoadipate to alpha-ketoadipate, and alpha-aminoadipate reductase, an enzyme required for the conversion of alpha-aminoadipate to lysine, were similar in S. pombe cells grown in the alpha-aminoadipate or ammonium sulfate medium. However, the level of homoisocitrate dehydrogenase, an enzyme before the alpha-ketoadipate step, was twelvefold lower in S. pombe cells grown in the alpha-aminoadipate medium compared to the level in cells grown in the ammonium sulfate medium. Pathogenic fungi used in this study did not accumulate alpha-ketoadipate and alpha-aminoadipate-delta-semialdehyde when grown in medium containing alpha-aminoadipate and lysine, respectively, as sole nitrogen source. However, only pathogenic fungi used both lysine and alpha-aminoadipate as sole nitrogen source. This unique metabolic property could be useful for the identification of these pathogens.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012568 Schizosaccharomyces A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales. Fission Yeast,Schizosaccharomyces malidevorans,Schizosaccharomyces pombe,Yeast, Fission,S pombe,Fission Yeasts
D015074 2-Aminoadipic Acid A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-METHYL-D-ASPARTATE; (NMDA). alpha-Aminoadipic Acid,2 Aminoadipic Acid,2-Aminohexanedioic Acid,2 Aminohexanedioic Acid,Acid, 2 Aminoadipic,Acid, 2-Aminoadipic,Acid, 2-Aminohexanedioic,Acid, alpha-Aminoadipic,Aminoadipic Acid, 2,alpha Aminoadipic Acid

Related Publications

Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
January 2006, Cell biochemistry and biophysics,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
May 1985, Journal of bacteriology,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
January 1966, The American review of respiratory disease,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
July 1995, Current genetics,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
July 1970, Biochimica et biophysica acta,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
June 1990, FEMS microbiology letters,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
December 1988, Journal of bacteriology,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
October 1995, FEMS microbiology letters,
Z H Ye, and R C Garrad, and M K Winston, and J K Bhattacharjee
May 1965, Journal of bacteriology,
Copied contents to your clipboard!