Differentiation and dynamic analysis of primitive vessels from embryonic stem cells. 2009

Gefei Zeng, and Victoria L Bautch
Department of Biology, Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Embryonic stem (ES) cells, which are derived from developing mouse blastocysts, have the ability to differentiate into various cell types in vitro. When placed in basal medium with added serum, mouse ES cells undergo a programmed differentiation favoring formation of cell types that are found in the embryonic yolk sac, including vascular endothelial cells. These in vitro differentiated endothelial cells form primitive blood vessels, analogous to the first vessels that form in the embryo and the yolk sac. This differentiation model is ideal for both genetic and pharmacological manipulation of early vascular development. We have made mouse ES cell lines that express endothelial-specific GFP or H2B-GFP and used these lines to study the processes of mammalian vessel development by real-time imaging. Here we describe protocols for making transgenic ES cells and imaging the processes of blood vessel development. We also provide methods for ES cell maintenance and differentiation, and methods for analysis of vascular marker expression.

UI MeSH Term Description Entries
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016707 Tissue Fixation The technique of using FIXATIVES in the preparation of cytologic, histologic, or pathologic specimens for the purpose of maintaining the existing form and structure of all the constituent elements. Fixation, Tissue
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic

Related Publications

Gefei Zeng, and Victoria L Bautch
January 2008, Methods in enzymology,
Gefei Zeng, and Victoria L Bautch
June 2012, Stem cells and development,
Gefei Zeng, and Victoria L Bautch
November 2004, Journal of cell science,
Gefei Zeng, and Victoria L Bautch
January 2016, Methods in molecular biology (Clifton, N.J.),
Gefei Zeng, and Victoria L Bautch
April 1995, Development, growth & differentiation,
Gefei Zeng, and Victoria L Bautch
April 2012, Current protocols in immunology,
Gefei Zeng, and Victoria L Bautch
September 2015, Stem cells (Dayton, Ohio),
Gefei Zeng, and Victoria L Bautch
April 2022, Biochemical and biophysical research communications,
Gefei Zeng, and Victoria L Bautch
June 2015, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!