The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. 1991

R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
Department of Cell and Molecular Biology, Strangeways Research Laboratory, Cambridge, U.K.

Human gingival fibroblasts in culture were shown to secrete a 72 kDa progelatinase, of which a proportion in the medium was found to be complexed with tissue inhibitor of metalloproteinases-2 (TIMP-2). A purification procedure was devised to purify free enzyme and inhibitor. We also describe the purification of both 95 kDa progelatinase bound to TIMP-1 and free 95 kDa progelatinase from the medium of U937 cells. A polyclonal antiserum to TIMP-2 was prepared and it was shown that TIMP-1 and TIMP-2 are antigenically distinct. The ability to form stable complexes and the relative inhibitory activities of TIMP-1 and TIMP-2 towards 95 kDa and 72 kDa gelatinases, collagenase, stromelysins 1 and 2 and punctuated metalloproteinase were determined; only minor differences were found. Complex-formation between TIMP-2 and 72 kDa progelatinase was demonstrated not to reduce the metalloproteinase-inhibitory activity of TIMP-2, a finding that led to the characterization of high-molecular-mass TIMP activity. Competition experiments between progelatinases and active gelatinases for TIMPs indicated that the affinity of TIMPs for progelatinases is weaker than that for active gelatinases. In a study of the effects of TIMP-1 and TIMP-2 on progelatinase self-cleavage we found that both TIMP-1 and TIMP-2 inhibit the conversion of 95 kDa and 72 kDa progelatinases and prostromelysin into lower-molecular-mass forms. TIMP capable of complexing with progelatinase was shown to be no more efficient an inhibitor of gelatinase self-cleavage than TIMP not able to complex with progelatinase.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005881 Gingiva Oral tissue surrounding and attached to TEETH. Gums,Interdental Papilla,Papilla, Interdental,Gum

Related Publications

R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
June 1991, European journal of biochemistry,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
July 1991, The Journal of biological chemistry,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
August 1991, Biochimica et biophysica acta,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
July 1991, The Journal of biological chemistry,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
February 1996, The Biochemical journal,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
July 1992, The Biochemical journal,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
February 1992, Biochemistry,
R V Ward, and R M Hembry, and J J Reynolds, and G Murphy
April 1999, The Journal of biological chemistry,
Copied contents to your clipboard!