Rational design of quinazoline-based irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase. 1991

R O Dempcy, and E B Skibo
Department of Chemistry, Arizona State University, Tempe 85287-1604.

Described herein is the rational design of irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase (PNPase). Inhibitor design started with the observation that the amino group of 8-aminoquinazolin-4(3H)-one interacts with enzyme-bound phosphate. This observation correctly predicted that the 5,8-dione (quinone) and 5,8-dihydroxy (hydroquinone) derivatives of quinazolin-4(3H)-ones would enter the active site. The amine-phosphate interaction also served to confirm that a quinazolin-4(3H)-one binds in the PNPase active sites like a purine substrate. From models of the PNPase active site it was possible to design quinazoline-based quinones that undergo a reductive-addition reaction with an active-site glutamate residue. The best inhibitor studied, 2-(chloromethyl)quinazoline-4,5,8(3H)-trione, rapidly inactivates PNPase by a first-order process with an inhibitor to enzyme stoichiometry of 150. The active-site hydroquinone adduct of this inhibitor eliminates a leaving group to afford a quinone methide species positioned to alkylate another active-site glutamate residue. Thus, this inhibitor is designed to cross-link the PNPase active site by reductive addition followed by the generation of an alkylating quinone methide species.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs

Related Publications

R O Dempcy, and E B Skibo
November 1986, Federation proceedings,
R O Dempcy, and E B Skibo
July 1995, Acta crystallographica. Section D, Biological crystallography,
R O Dempcy, and E B Skibo
February 1993, Farmaco (Societa chimica italiana : 1989),
R O Dempcy, and E B Skibo
July 1994, Journal of medicinal chemistry,
R O Dempcy, and E B Skibo
August 1956, The Journal of biological chemistry,
R O Dempcy, and E B Skibo
January 1984, Revue d'elevage et de medecine veterinaire des pays tropicaux,
R O Dempcy, and E B Skibo
January 2011, Biomeditsinskaia khimiia,
Copied contents to your clipboard!