Ig VH gene expression among human follicular lymphomas. 1991

D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
Department of Medicine, Stanford University School of Medicine, CA.

Thirty-six randomly selected cases of low grade follicular lymphoma (FL) were analyzed for Ig heavy chain variable region (VH) gene expression. Assignment to one of the six human VH gene families (VH1 to VH6) was made with a polymerase chain reaction-based technique using family-specific leader primers. The frequency of VH family use in FL was found to be similar to that reported for normal peripheral blood lymphocytes and is therefore also roughly proportional to VH family size. To evaluate expression within an individual family, all of the lymphoma VH genes from the middle size VH4 family were sequenced and compared with previously published sequences. Of these eight lymphoma VH sequences, six were most closely related to just two of the 10 known functional VH4 germline genes. Nonrandom usage by FL of the JH3, JH4, and JH5 joining segments was also observed. Nucleotide sequences were also determined for 10 randomly selected lymphoma VH genes from the large VH3 family. With one possible exception, none of these lymphoma VH sequences appear to represent any of the VH3 genes that may be preferentially used in the fetal repertoire.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008224 Lymphoma, Follicular Malignant lymphoma in which the lymphomatous cells are clustered into identifiable nodules within the LYMPH NODES. The nodules resemble to some extent the GERMINAL CENTER of lymph node follicles and most likely represent neoplastic proliferation of lymph node-derived follicular center B-LYMPHOCYTES. Brill-Symmers Disease,Follicular Lymphoma,Lymphoma, Giant Follicular,Lymphoma, Nodular,Follicular Large-Cell Lymphoma,Follicular Lymphoma, Giant,Follicular Lymphoma, Grade 1,Follicular Lymphoma, Grade 2,Follicular Lymphoma, Grade 3,Follicular Mixed-Cell Lymphoma,Giant Follicular Lymphoma,Histiocytic Lymphoma, Nodular,Large Lymphoid Lymphoma, Nodular,Large-Cell Lymphoma, Follicular,Lymphocytic Lymphoma, Nodular, Poorly Differentiated,Lymphocytic Lymphoma, Nodular, Poorly-Differentiated,Lymphoma, Follicular Large-Cell,Lymphoma, Follicular, Grade 1,Lymphoma, Follicular, Grade 2,Lymphoma, Follicular, Grade 3,Lymphoma, Follicular, Mixed Cell,Lymphoma, Follicular, Mixed Lymphocytic-Histiocytic,Lymphoma, Follicular, Mixed Small and Large Lymphoid,Lymphoma, Follicular, Small and Large Cleaved Cell,Lymphoma, Follicular, Small and Large Cleaved-Cell,Lymphoma, Histiocytic, Nodular,Lymphoma, Large Cell, Follicular,Lymphoma, Large Lymphoid, Nodular,Lymphoma, Large-Cell, Follicular,Lymphoma, Lymphocytic, Nodular, Poorly Differentiated,Lymphoma, Lymphocytic, Nodular, Poorly-Differentiated,Lymphoma, Mixed-Cell, Follicular,Lymphoma, Nodular, Large Follicular Center Cell,Lymphoma, Nodular, Large Follicular Center-Cell,Lymphoma, Nodular, Mixed Lymphocytic Histiocytic,Lymphoma, Nodular, Mixed Lymphocytic-Histiocytic,Lymphoma, Nodular, Mixed Small and Large Cell,Lymphoma, Small Cleaved Cell, Follicular,Lymphoma, Small Cleaved-Cell, Follicular,Lymphoma, Small Follicular Center-Cell,Lymphoma, Small Lymphoid, Follicular,Mixed-Cell Lymphoma, Follicular,Nodular Large Follicular Center-Cell Lymphoma,Small Cleaved-Cell Lymphoma, Follicular,Small Follicular Center-Cell Lymphoma,Brill Symmers Disease,Disease, Brill-Symmers,Follicular Large Cell Lymphoma,Follicular Large-Cell Lymphomas,Follicular Lymphomas,Follicular Lymphomas, Giant,Follicular Mixed Cell Lymphoma,Follicular Mixed-Cell Lymphomas,Giant Follicular Lymphomas,Histiocytic Lymphomas, Nodular,Large Cell Lymphoma, Follicular,Large-Cell Lymphomas, Follicular,Lymphoma, Follicular Large Cell,Lymphoma, Follicular Mixed-Cell,Lymphoma, Nodular Histiocytic,Lymphoma, Small Follicular Center Cell,Lymphomas, Follicular,Lymphomas, Follicular Large-Cell,Lymphomas, Follicular Mixed-Cell,Lymphomas, Giant Follicular,Lymphomas, Nodular,Lymphomas, Nodular Histiocytic,Mixed Cell Lymphoma, Follicular,Mixed-Cell Lymphomas, Follicular,Nodular Histiocytic Lymphoma,Nodular Histiocytic Lymphomas,Nodular Large Follicular Center Cell Lymphoma,Nodular Lymphoma,Nodular Lymphomas,Small Cleaved Cell Lymphoma, Follicular,Small Follicular Center Cell Lymphoma
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015723 Gene Library A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences. DNA Library,cDNA Library,DNA Libraries,Gene Libraries,Libraries, DNA,Libraries, Gene,Libraries, cDNA,Library, DNA,Library, Gene,Library, cDNA,cDNA Libraries
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
October 2020, Pathology oncology research : POR,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
October 1988, Journal of immunology (Baltimore, Md. : 1950),
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
June 1988, Journal of immunology (Baltimore, Md. : 1950),
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
March 1999, Investigative ophthalmology & visual science,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
August 1988, The Journal of experimental medicine,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
April 1989, Journal of immunology (Baltimore, Md. : 1950),
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
March 2001, Blood,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
April 1997, Annals of the New York Academy of Sciences,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
February 2005, Journal of the neurological sciences,
D W Bahler, and M J Campbell, and S Hart, and R A Miller, and S Levy, and R Levy
September 1995, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!