Developmental angiogenesis of the central nervous system. 2008

Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
Stanford University School of Medicine. Division of Hematology, Stanford, CA.

The vasculature of the central nervous system (CNS) is highly specialized with a blood-brain-barrier, reciprocal neuroepithelial-endothelial cell interactions and extensive pericyte coverage. Developmentally, numerous important signaling pathways participate in CNS angiogenesis to orchestrate the precise timing and spatial arrangement of the complex CNS vascular network. From a therapeutic standpoint, the CNS vasculature has attracted increased attention since many human ailments, such as stroke, retinopathy, cancer and autoimmune disease are intimately associated with the biology of CNS blood vessels. This review focuses on growth factor pathways that have been shown to be important in developmental CNS vascularization through studies of mouse genetic models and human diseases.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012171 Retinal Vessels The blood vessels which supply and drain the RETINA. Pecten Oculi,Retinal Vasculature,Retinal Blood Vessels,Retinal Blood Vessel,Retinal Vasculatures,Retinal Vessel,Vasculature, Retinal,Vessel, Retinal,Vessel, Retinal Blood
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
September 2014, Cellular and molecular life sciences : CMLS,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
August 2002, Molecular and cellular neurosciences,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
January 1973, Research publications - Association for Research in Nervous and Mental Disease,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
January 1964, Ceskoslovenska pediatrie,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
July 1962, Pediatria polska,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
April 2001, Child and adolescent psychiatric clinics of North America,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
March 1958, Fortschritte der Neurologie, Psychiatrie, und ihrer Grenzgebiete,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
September 2007, Journal of neuro-oncology,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
November 1985, Casopis lekaru ceskych,
Michael R Mancuso, and Frank Kuhnert, and Calvin J Kuo
January 2014, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!