Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae). 2009

Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
Zoology Department, Oxford University, South Parks Road, Oxford, OX1 3PS, UK.

The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.

UI MeSH Term Description Entries
D002816 Chordata, Nonvertebrate A portion of the animal phylum Chordata comprised of the subphyla CEPHALOCHORDATA; UROCHORDATA, and HYPEROTRETI, but not including the Vertebrata (VERTEBRATES). It includes nonvertebrate animals having a NOTOCHORD during some developmental stage. Invertebrate Chordate,Chordatas, Nonvertebrate,Chordate, Invertebrate,Chordates, Invertebrate,Invertebrate Chordates,Nonvertebrate Chordata,Nonvertebrate Chordatas
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D054259 Neural Tube A tube of ectodermal tissue in an embryo that will give rise to the CENTRAL NERVOUS SYSTEM, including the SPINAL CORD and the BRAIN. Lumen within the neural tube is called neural canal which gives rise to the central canal of the spinal cord and the ventricles of the brain. For malformation of the neural tube, see NEURAL TUBE DEFECTS. Neural Canal,Canal, Neural,Canals, Neural,Neural Canals,Neural Tubes,Tube, Neural,Tubes, Neural
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
February 1999, Gene,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
October 2012, Gene,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
September 2009, Cold Spring Harbor protocols,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
January 2021, Methods in molecular biology (Clifton, N.J.),
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
December 2008, Development genes and evolution,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
December 2008, Development genes and evolution,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
April 2010, Genes & genetic systems,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
October 2009, BMC evolutionary biology,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
December 2008, Development genes and evolution,
Peter W Osborne, and Gérard Benoit, and Vincent Laudet, and Michael Schubert, and David E K Ferrier
January 2008, The International journal of developmental biology,
Copied contents to your clipboard!