Structure of Colorado potato beetle lipophorin: differential scanning calorimetric and small-angle X-ray scattering studies. 1991

C Katagiri, and M Sato, and S de Kort, and Y Katsube
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.

The structure of lipophorin, isolated from hemolymph of the Colorado potato beetle, was investigated by differential scanning calorimetry (DSC) and small-angle X-ray scattering. The DSC heating curves of intact lipophorin showed endothermic peaks that were similar to peaks obtained with the hydrocarbon fraction isolated from this lipophorin. The observed peaks correlated with the transition of the hydrocarbons from an ordered into a more disordered state. Changes in structure of the lipophorin particles with increasing temperature were also observed by small-angle X-ray scattering studies. The structural organization of lipophorin was further elucidated by simulation analysis, using a three-layered symmetrical sphere as a model. These studies revealed that lipophorin from the Colorado potato beetle is a sphere with a maximum diameter of 175 A. The sphere is composed of three radially symmetrical layers of different electron densities. The outer layer (37.5-39.5 A in thickness) is composed of phospholipid, apolipophorin I, and part of apolipophorin II. The middle layer (5-10 A) contains diacylglycerol, the rest of apolipophorin II, and probably beta-carotene. The core of the particle (40-45 A) only contains hydrocarbons. This structure differs from another model, previously proposed for cockroach and locust lipophorins [Katagiri, C., Sato, M., & Tanaka N. (1987) J. Biol. Chem. 262, 15857-15861], in the small size of the middle layer. The volume of the middle layer correlated well with the low diacylglycerol content of this lipophorin.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003058 Cockroaches Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae. Blaberidae,Blattaria,Blattidae,Blattodea,Cryptocercidae,Dictyoptera,Polyphagidae,Cockroach,Blattarias,Blattodeas,Cockroache,Cockroachs,Dictyopteras
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001517 Coleoptera Order of winged insects also known as beetles comprising over 350,000 species in 150 families. They possess hard bodies with mouthparts adapted for chewing. Beetles,Beetle

Related Publications

C Katagiri, and M Sato, and S de Kort, and Y Katsube
January 2005, Chemistry and physics of lipids,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
February 2023, Current opinion in chemical biology,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
January 1991, Journal of cell science. Supplement,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
December 1952, Nature,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
January 1979, Methods in enzymology,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
January 1973, Methods in enzymology,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
May 1999, Calcified tissue international,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
April 1989, Physical review. A, General physics,
C Katagiri, and M Sato, and S de Kort, and Y Katsube
January 2017, Methods (San Diego, Calif.),
Copied contents to your clipboard!