Lysophosphatidic acid (LPA) and its receptors. 2009

Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
The Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, CA 92037, United States.

Lysophosphatidic acid (LPA), a bioactive phospholipid, and its family of cognate G protein-coupled receptors have demonstrated roles in many biological functions in the nervous system. To date, five LPA receptors have been identified, and additional receptors may exist. Most of these receptors have been genetically deleted in mice toward identifying biological and medically relevant roles. In addition, small molecule agonists and antagonists have been reported. Here we review recent data on the nervous system functions of LPA signaling, and summarize data on reported agonists and antagonists of LPA receptors.

UI MeSH Term Description Entries
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010523 Peripheral Nervous System Diseases Diseases of the peripheral nerves external to the brain and spinal cord, which includes diseases of the nerve roots, ganglia, plexi, autonomic nerves, sensory nerves, and motor nerves. Peripheral Nerve Diseases,Peripheral Neuropathies,PNS (Peripheral Nervous System) Diseases,PNS Diseases,Peripheral Nervous System Disease,Peripheral Nervous System Disorders,Nerve Disease, Peripheral,Nerve Diseases, Peripheral,Neuropathy, Peripheral,PNS Disease,Peripheral Nerve Disease,Peripheral Neuropathy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D049368 Receptors, Lysophosphatidic Acid A subfamily of lysophospholipid receptors with specificity for LYSOPHOSPHATIDIC ACIDS. LPA Receptor,Lysophosphatidic Acid Receptor,Lysophosphatidic Acid Receptors,EDG7 Protein,Edg-4 Receptor,Edg-7 Receptor,Edg2 Protein,Edg4 Protein,LPA Receptors,LPA-1 Receptor,LPA1 Receptor,LPA2 Receptor,LPA3 Receptor,Receptor, Lysophosphatidic Acid,edg-2 Receptor,vzg-1 Receptor,Acid Receptor, Lysophosphatidic,Acid Receptors, Lysophosphatidic,Edg 4 Receptor,Edg 7 Receptor,LPA 1 Receptor,Receptor, Edg-4,Receptor, Edg-7,Receptor, LPA,Receptor, LPA1,Receptor, LPA2,Receptor, LPA3,Receptor, edg-2,Receptor, vzg-1,Receptors, LPA,edg 2 Receptor,vzg 1 Receptor

Related Publications

Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
December 2010, Oncology reports,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
September 2009, Prostaglandins & other lipid mediators,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
January 2013, Biochimica et biophysica acta,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
April 2010, Prostaglandins & other lipid mediators,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
January 2008, Angiogenesis,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
January 2006, Journal of pharmacological sciences,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
October 2004, Laboratory investigation; a journal of technical methods and pathology,
Kyoko Noguchi, and Deron Herr, and Tetsuji Mutoh, and Jerold Chun
December 2011, The Journal of biological chemistry,
Copied contents to your clipboard!