Heat shock response protects human peritoneal mesothelial cells from dialysate-induced oxidative stress and mitochondrial injury. 2009

Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Faculty of Renal Care, Kaohsiung Medical University, Kaohsiung, Taiwan.

BACKGROUND Chronic peritoneal dialysis (PD) is one of the major therapies for uremic patients. However, the peritoneal mesothelial cells (PMCs) are subject to the injury by bioincompatible dialysates. The aim of this study is to investigate the protective roles and mechanisms of heat shock response in PMCs. METHODS Primary cultured human PMCs (HPMCs) were subjected to commercial peritoneal dialysates. The cell viability was assayed by MTT test and Annexin V assay. The expression of HSPs was detected by Western blots analysis. Intracellular hydrogen peroxide and superoxide anion were detected using H(2)DCFDA and dHE probe, respectively, with flow cytometry. The mitochondrial membrane potential (DeltaPsim) of HPMCs was evaluated using JC1 probe with flow-cytometry. RESULTS Exposure of HPMCs to 1.5%, 2.5%, and 4.25% dextrose, and 7.5% icodextrin dialysates, respectively, for 60 min resulted in significantly accumulation of intracellular reactive oxygen species (ROS), DeltaPsim loss, and cell death in HPMCs. Amino acid dialysates exhibited no significant cytotoxicity. Adjusting the acidity in 1.5% dextrose and icodextrin dialysate significantly attenuated the dialysate-induced ROS generation and cell death in HPMCs. Heat pretreatment (41 degrees C, 30 minutes), which induced HSP 27 and 72 syntheses, significantly attenuated the dialysate-induced intracellular ROS accumulation, Dym loss, and cell death in HPMCs. CONCLUSIONS In conclusion, the acidic bioincompatible dialysates induce oxidative stress, DeltaPsim loss, and subsequent cell death in HPMCs. Amino acid dialysates is more biocompatible than glucose and icodextrin dialysates to HPMCs. Heat shock response protects HPMCs from the bioincompatible dialysates-induced cellular damage.

UI MeSH Term Description Entries
D010530 Peritoneal Dialysis Dialysis fluid being introduced into and removed from the peritoneal cavity as either a continuous or an intermittent procedure. Dialyses, Peritoneal,Dialysis, Peritoneal,Peritoneal Dialyses
D010537 Peritoneum A membrane of squamous EPITHELIAL CELLS, the mesothelial cells, covered by apical MICROVILLI that allow rapid absorption of fluid and particles in the PERITONEAL CAVITY. The peritoneum is divided into parietal and visceral components. The parietal peritoneum covers the inside of the ABDOMINAL WALL. The visceral peritoneum covers the intraperitoneal organs. The double-layered peritoneum forms the MESENTERY that suspends these organs from the abdominal wall. Parietal Peritoneum,Peritoneum, Parietal,Peritoneum, Visceral,Visceral Peritoneum,Parametrium,Parametriums
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D015314 Dialysis Solutions Solutions prepared for exchange across a semipermeable membrane of solutes below a molecular size determined by the cutoff threshold of the membrane material. Dialysate,Dialysis Solution,Dialyzate,Dialysates,Dialyzates,Solution, Dialysis,Solutions, Dialysis
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
January 2014, Oxidative medicine and cellular longevity,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
November 2001, Kidney international,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
January 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
January 2008, Antioxidants & redox signaling,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
January 2002, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
September 2013, Cell stress & chaperones,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
October 2006, World journal of gastroenterology,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
July 1993, The Journal of clinical investigation,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
March 2009, Cell stress & chaperones,
Hung-Tien Kuo, and Hsiang-Wen Chen, and Hui-Hsu Hsiao, and Hung-Chun Chen
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Copied contents to your clipboard!