Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases. 2009

Cong Yao, and Jared L Anderson
Department of Chemistry, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA.

The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.

UI MeSH Term Description Entries
D009930 Organic Chemicals A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form. Organic Chemical,Chemical, Organic,Chemicals, Organic
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D012492 Salts Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed) Salt
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D052578 Ionic Liquids Salts that melt below 100 C. Their low VOLATILIZATION can be an advantage over volatile organic solvents. Ionic Liquid,Ionic Solvents,Liquid, Ionic,Liquids, Ionic,Solvents, Ionic
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

Cong Yao, and Jared L Anderson
April 2011, Journal of separation science,
Cong Yao, and Jared L Anderson
January 2013, Journal of chromatography. A,
Cong Yao, and Jared L Anderson
April 2008, The Analyst,
Cong Yao, and Jared L Anderson
November 2018, Journal of separation science,
Cong Yao, and Jared L Anderson
August 2010, Journal of chromatography. A,
Cong Yao, and Jared L Anderson
August 2014, Journal of chromatography. A,
Cong Yao, and Jared L Anderson
May 1999, Se pu = Chinese journal of chromatography,
Cong Yao, and Jared L Anderson
January 2005, Journal of chromatography. A,
Copied contents to your clipboard!