Reinnervation of denervated skeletal muscle by central neurons regenerating via ventral roots implanted into the spinal cord. 1991

K J Smith, and R T Kodama
Department of Anatomy and Neurobiology, Eastern Virginia Medical School, Norfolk 23501.

The reinnervation of denervated skeletal muscle by central axons regenerating via a ventral root implanted into the spinal cord was examined in rats. The 8th thoracic ventral root was severed and its distal end implanted into the ventro-lateral column of the spinal cord via a stab incision. In control animals the root was severed, but was not implanted into the stab incision. After 12-14 months the animals were examined electrophysiologically to determine the presence or absence of motor units in the 8th intercostal muscle which were reinnervated by centrally derived axons regenerating via the implant. Such units were found in implanted animals, but in none of the controls. Evidence that the motor units were reinnervated by central axons included the facts that the units could be activated either, (1) reflexly (i.e. trans-synaptically) by electrical stimulation of the dorsal roots or spinal cord, or (2) pharmacologically by either the intraspinal injection of glutamate or acetycholine, or by the systemic administration of strychnine. Great care was taken to ensure that the only feasible connection between the spinal cord and the 8th intercostal muscle was via the site of implantation. The EMG signals from the motor units were of large amplitude, typical of reinnervated muscle, and their individual activation resulted in discernible contractions of regions of the T8 intercostal muscle. We conclude that regenerating CNS neurons can be guided to innervate denervated skeletal muscle by the implantation of severed ventral roots into the spinal cord. The neuromuscular synapses formed are functional and persistent. The findings may be relevant to the restoration of function after nervous injuries, such as the avulsion of ventral roots.

UI MeSH Term Description Entries
D007366 Intercostal Muscles Respiratory muscles that arise from the lower border of one rib and insert into the upper border of the adjoining rib, and contract during inspiration or respiration. (From Stedman, 25th ed) Intercostal Muscle,Muscle, Intercostal,Muscles, Intercostal
D008297 Male Males
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009417 Nerve Tissue Differentiated tissue of the central nervous system composed of NERVE CELLS, fibers, DENDRITES, and specialized supporting cells. Nervous Tissue,Nerve Tissues,Nervous Tissues,Tissue, Nerve,Tissue, Nervous,Tissues, Nerve,Tissues, Nervous
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K J Smith, and R T Kodama
April 1993, Fukuoka igaku zasshi = Hukuoka acta medica,
K J Smith, and R T Kodama
September 1968, Journal of neurophysiology,
K J Smith, and R T Kodama
December 1970, The American journal of physiology,
Copied contents to your clipboard!