Functional organization of vestibular and visual inputs to neck and forelimb motoneurons in the frog. 1977

M Maeda, and P C Magherini, and W Precht

1. Intracellular responses in neck and forelimb motoneurons to electrical stimulation of the vestibular nerve, the optic tectum, and the optic nerve were studied in frog. 2. Stimulation of the anterior branch of the vestibular nerve typically produced EPSPs, bilaterally, in neck, shoulder (DOR), and forelimb extensor (TRI, RAD) motoneurons, and bilateral IPSPs in forelimb adductor (PED) and flexor (ULN, COR) motoneurons. 3. Latencies of PSPs recorded in neck, shoulder, and proximal extensor motoneurons (TRI) were mostly in the disynaptic range, whereas many of those recorded in distal extensor (RAD) and in adductor and flexor motoneurons involved three synapses. 4. Lesion of the vestibulospinal fibers greatly reduced the vestibular nerve-evoked field potentials in the spinal cord and the occurrence of PSPs in forelimb motoneurons. These results as well as the latency measurements suggest that the pathway linking vestibular nerve and forelimb motoneurons mainly consists of vestibulospinal fibers, though involvement of other structures for production of later PSPs could not be completely ruled out. Hemisection of the brain stem at its most caudal level showed that the pathway to the contralateral motoneurons crosses at the level of brain stem as well as in the spinal cord. 5. Stimulation of the optic tectum produced EPSPs, IPSPs, and a mixture of EPSPs and IPSPs in neck, shoulder, and forelimb motoneurons, bilaterally. Most frequently, a combination of an excitation and inhibition was observed. The pathway from the optic tectum to neck and limb motoneurons is at least dysnaptic in nature. 6. Stimulation of the optic nerve produced IPSPs and a mixture of EPSPs and IPSPs in neck and forelimb motoneurons. Impulses originating from the optic nerve descend as far as to lumbar motoneurons producing EPSP-IPSP sequences bilaterally. 7. Interaction studies suggested that the vestibular and optic pathways to neck and forelimb motoneurons are separate from each other so that the site of integration of vestibular and visual input occurs at the level of motoneurons. 8. Evidence for electronic coupling among forelimb motoneurons and electrical synaptic transmission in th pathway linking vestibular nerve and forelimb motoneurons is presented.

UI MeSH Term Description Entries
D008160 Lumbosacral Plexus The lumbar and sacral plexuses taken together. The fibers of the lumbosacral plexus originate in the lumbar and upper sacral spinal cord (L1 to S3) and innervate the lower extremities. Inferior Cluneal Nerves,Lumbar Plexus,Posterior Femoral Cutaneous Nerve,Sacral Plexus,Cluneal Nerve, Inferior,Cluneal Nerves, Inferior,Inferior Cluneal Nerve,Nerve, Inferior Cluneal,Nerves, Inferior Cluneal,Plexus, Lumbar,Plexus, Lumbosacral,Plexus, Sacral
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

M Maeda, and P C Magherini, and W Precht
June 1974, Pflugers Archiv : European journal of physiology,
M Maeda, and P C Magherini, and W Precht
April 1984, Neuroscience,
M Maeda, and P C Magherini, and W Precht
January 1979, Progress in brain research,
M Maeda, and P C Magherini, and W Precht
January 1983, Experimental brain research,
M Maeda, and P C Magherini, and W Precht
February 1999, Archives italiennes de biologie,
M Maeda, and P C Magherini, and W Precht
May 1982, Brain research,
M Maeda, and P C Magherini, and W Precht
March 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Maeda, and P C Magherini, and W Precht
May 2018, Nature neuroscience,
Copied contents to your clipboard!