Using least median of squares for structural superposition of flexible proteins. 2009

Yu-Shen Liu, and Yi Fang, and Karthik Ramani
Purdue University, West Lafayette, IN 47907, USA. liuyushen00@gmail.com

BACKGROUND The conventional superposition methods use an ordinary least squares (LS) fit for structural comparison of two different conformations of the same protein. The main problem of the LS fit that it is sensitive to outliers, i.e. large displacements of the original structures superimposed. RESULTS To overcome this problem, we present a new algorithm to overlap two protein conformations by their atomic coordinates using a robust statistics technique: least median of squares (LMS). In order to effectively approximate the LMS optimization, the forward search technique is utilized. Our algorithm can automatically detect and superimpose the rigid core regions of two conformations with small or large displacements. In contrast, most existing superposition techniques strongly depend on the initial LS estimating for the entire atom sets of proteins. They may fail on structural superposition of two conformations with large displacements. The presented LMS fit can be considered as an alternative and complementary tool for structural superposition. CONCLUSIONS The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. Furthermore, we show that the LMS fit can be extended to multiple level superposition between two conformations with several rigid domains. Our fit tool has produced successful superpositions when applied to proteins for which two conformations are known. The binary executable program for Windows platform, tested examples, and database are available from https://engineering.purdue.edu/PRECISE/LMSfit.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D016018 Least-Squares Analysis A principle of estimation in which the estimates of a set of parameters in a statistical model are those quantities minimizing the sum of squared differences between the observed values of a dependent variable and the values predicted by the model. Rietveld Refinement,Analysis, Least-Squares,Least Squares,Analyses, Least-Squares,Analysis, Least Squares,Least Squares Analysis,Least-Squares Analyses,Refinement, Rietveld
D030562 Databases, Protein Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties. Amino Acid Sequence Databases,Databases, Amino Acid Sequence,Protein Databases,Protein Sequence Databases,SWISS-PROT,Protein Structure Databases,SwissProt,Database, Protein,Database, Protein Sequence,Database, Protein Structure,Databases, Protein Sequence,Databases, Protein Structure,Protein Database,Protein Sequence Database,Protein Structure Database,SWISS PROT,Sequence Database, Protein,Sequence Databases, Protein,Structure Database, Protein,Structure Databases, Protein

Related Publications

Yu-Shen Liu, and Yi Fang, and Karthik Ramani
June 2015, Journal of computational biology : a journal of computational molecular cell biology,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
April 2009, Computer aided design,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
August 1992, Computers and biomedical research, an international journal,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
October 2014, Psychometrika,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
December 1972, The Journal of pharmacy and pharmacology,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
January 1993, IEEE transactions on medical imaging,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
January 2022, Multivariate behavioral research,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
January 2006, Journal of research of the National Institute of Standards and Technology,
Yu-Shen Liu, and Yi Fang, and Karthik Ramani
August 2022, Psychological methods,
Copied contents to your clipboard!