Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate). 2009

Zhifei Chen, and Shaoting Cheng, and Kaitian Xu
Multidisciplinary Research Center, Shantou University, Daxue Lu 243, Shantou, Guangdong 515063, China.

A series of block poly(ester-urethane) poly(3/4HB-HHxHO) urethanes (abbreviated as PUHO) based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB-diol) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) (PHHxHO-diol) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent, with different 3HB, 4HB, HHxHO compositions and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H, (13)C nuclear magnetic resonance spectrum (NMR), two-dimensional correlation spectroscopy (COSY ((1)H, (13)C) NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of water and CH(2)I(2). DSC revealed that the poly(3/4HB-HHxHO) urethanes are almost amorphous with a little crystallinity (less than 6%) and T(g) from -23 degrees C to -3 degrees C. The polyurethanes are more hydrophobic (water contact angle 88 degrees -117 degrees ) than the P3/4HB and PHHxHO raw materials. The lactate dehydrogenase (LDH) assay and platelet adhesion determination showed that the obtained polyurethanes have much higher platelet adhesion property than raw materials and common biodegradable polymers polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB). Hydrophobicity and crystallinity degree are important factors to affect the platelet adhesion. All the properties can be tailored by changing the composition and segment length of prepolymers P3/4HB-diol and PHHxHO-diol.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D011091 Polyesters Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours. Polyester
D011140 Polyurethanes A group of thermoplastic or thermosetting polymers containing polyisocyanate. They are used as ELASTOMERS, as coatings, as fibers and as foams. Polyisocyanates,Ostamer,Pellethane,Spandex,Ostamers,Pellethanes,Polyisocyanate,Polyurethane,Spandices
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002208 Caproates Derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated six carbon aliphatic structure. Hexanoates,Caproic Acid Derivatives,Caproic Acids,Hexanoic Acid Derivatives,Hexanoic Acids,Acid Derivatives, Caproic,Acid Derivatives, Hexanoic,Acids, Caproic,Acids, Hexanoic,Derivatives, Caproic Acid,Derivatives, Hexanoic Acid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000091402 Prohibitins Ubiquitously expressed conserved proteins associated with multiple functions including APOPTOSIS; CELL PROLIFERATION, regulations of various immune and mitochondrial functions, and cellular stress responses. Prohibitin 1 and prohibitin 2 form a ring-shaped complex in the INNER MITOCHONDRIAL MEMBRANE. Prohibitin

Related Publications

Zhifei Chen, and Shaoting Cheng, and Kaitian Xu
April 2011, Biomaterials,
Zhifei Chen, and Shaoting Cheng, and Kaitian Xu
January 2009, Journal of biomaterials science. Polymer edition,
Zhifei Chen, and Shaoting Cheng, and Kaitian Xu
January 2014, Journal of microencapsulation,
Zhifei Chen, and Shaoting Cheng, and Kaitian Xu
July 2014, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Copied contents to your clipboard!